
Whiteflag Protocol Specification

Status
version 1
status DRAFT 6
date 28 FEB 2019

1

1 Introduction

1.1 Background

Current armed conflicts are highly complex, because of the sheer number of parties involved: regular military forces,
armed groups, peacekeeping forces, neutral parties such as journalists and non-governmental human-rights and aid
organisations, civilians, refugees etc. Even though parties are opposing forces, or neutral organisations that do not
want to show any affiliation, they do require to quickly and directly communicate to one or more other parties involved
in the conflict in different situations.
This is not new. The white flag is the original internationally recognized protective sign of truce or ceasefire, and
request for negotiation. A white flag signifies to all that an approaching negotiator is unarmed, with an intent to
surrender or a desire to communicate.
This standard for a digital white flag protocol, the Whiteflag Protocol, provides a reliable means for both combatant
and neutral parties in conflict zones to digitally communicate pre-defined signs and signals using blockchain technology.
These sign and signals can also be used to communicate information about natural and man-made disasters, thus
creating shared situational awareness beyond conflicts.
All in all, the protocol forms the basis for a neutral and open network, the Whiteflag Network, for trusted real-time
messaging between parties in conflicts and disaster response.

1.2 Purpose

The purpose of the Whiteflag Protocol is to provide an open, real-time, trusted communication channel between any
or all parties in conflict and disaster zones, without the requirement for a trusted third party or any specific software
or system. It is the intention to provide a means of communication to be used that is fast, reliable and accessible by
everyone, in addition to internal communications within organisations and in addition to any currently existing but
limited communication methods such as flags, signs, registers etc.
The purpose of this document is to describe and define the protocol and the message format of the communication
channel for policy makers and specialists to be able to adopt and implement the Whiteflag Protocol.

1.3 Document Structure

Chapter 1 “Introduction” describes this document. Chapter 2 “Overview” defines the scope and gives an overview of
the protocol, followed by typical use case examples in Chapter 3 “Use Case Examples”. Chapter 4 “Message Format”
provides the detailed messages descriptions, and Chapter 5 “Protocol” the detailed protocol description.

1.4 Used Terminology

The following phrases in this specification must be interpreted as follows:
• . . . MUST: indicates that something is mandatory, i.e. an absolute requirement
• . . . MUST BE . . . IF . . . : indicates that something is mandatory if some condition is met
• . . . MUST BE . . . WHEN . . . : indicates something is mandatory when something becomes true
• . . . MUST NOT . . . : indicates that something is not allowed, i.e. an absolute prohibition
• . . . MAY ONLY . . . IF . . . : indicates something is only allowed if some condition is met
• . . . MAY . . . : indicates that something is allowed
• . . . SHOULD: indicates something is strongly recommended
• . . . SHOULD NOT: indicates something is strongly not recommended
• . . . NEED NOT . . . / . . . NOT REQUIRED : indicates that something is not mandatory

An overview of definitions of the most important terms used in this document can be found in Annex D.

2

1.5 License and Usage

All persons and organisations that contributed to the initial development of the Whiteflag Protocol did so disinterestedly.
The Whiteflag Protocol specification is dedicated to the public domain under the Creative Commons CC0-1.0
Universal Public Domain Dedication statement, meaning that to the extent possible under law, the authors and their
organisations have waived all copyright and related or neighboring rights to this work, allowing anyone to copy, modify,
distribute and implement the work, even for commercial purposes, all without asking permission.
In no way are the patent or trademark rights of any person affected by this dedication to the public domain, nor are
the rights that other persons may have in the work or in how the work is used, such as publicity or privacy rights.
Unless expressly stated otherwise, the authors and their organisations make no warranties about the work, and disclaim
liability for all uses of the work, to the fullest extent permitted by applicable law. When using or citing the work, you
should not imply endorsement by the authors or the affirmer.
WARNING: THE USAGE OF SIGNS AND SIGNALS IN THIS SPECIFICATION IS SUBJECT TO LOCAL AND/OR
INTERNATIONAL LAWS. Please take note of the following when implementing or using this standard:

• This standard only specifies an additional means of communication for certain signs and signals, and it does not
replace any existing standard, regulation or means of communication, whether mandatory or not, including but
not limited to physical signs, radio communications, official registers, etc.

• The usage of protective signs is subject to International Humanitarian Law. Misuse of protective signs is a
punishable violation under local and international laws.

• The usage of emergency signals may be subject to various regulations and standards, depending on location and
context. The misuse of emergency signals, including misuse of the duress functionality, may be a punishable
violation under local and international laws.

1.6 Configuration Management

It is foreseen that this standard requires updates in the near future as a result of validation testing and to ensure
compatibility with emerging distributed computing practices, paradigms and standards. Therefore, for the time being,
the standard will remain under configuration control of the authors. Requests and comments may be e-mailed to the
authors:

• T. Schless: tschless (at) acm . org
• M. Kolenbrander: mkolenbrander (at) acm . org

In the meantime, a more sustainable process for configuration management of this standard in line with its open
character is under consideration.

3

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

2 Overview

2.1 Design Principles

The following principles are the basis for the Whiteflag Protocol:
• the protocol is based on blockchain technology, but is “blockchain-agnostic”, i.e. independent of any specific

blockchain;
• the protocol is as free and open as the underlying blockchain and internet technologies are: anyone can join at

any time without permission;
• the working of the protocol does not rely on any third party, i.e. there is no ownership of the network that is

created with the protocol and no dependency on specific software or a system;
• the protocol does not have access control, but does provide means of authentication;
• the protocol inherits the data integrity and non-repudiation properties of the underlying blockchain(s);
• the protocol allows to use encryption for message confidentiality;
• the protocol should be compliant with international rules and standards for armed conflicts;
• the protocol is kept as simple as possible, to ensure easy access, easy understanding and easy implementation;
• the message formats are fixed to ensure interoperability and a common understanding between the communicating

parties;
• the protocol is extensible to allow functionality to be added with backwards compatibility;
• implementation only requires the use of open standards.

2.2 Protocol Stack and Scope

The Whiteflag Protocol works on top of the internet and on one or more blockchains to create a network for trusted
communications that can be used by different applications through application programming interfaces.
The protocol stack comprises the following 6 layers, from bottom to top:

• The Connection Layers are to ensure global connectivity. Essentially these are the 7 OSI layers as implemented
with the Internet.

• The Blockchain Layer ensures connectivity and interaction with specific blockchains, typically through their
APIs.

• The Blockchain Overlay Network Layer is an abstraction for applications using existing blockchains to validate
their transactions. In this case, the Whiteflag Network is created as a blockchain overlay network by Whiteflag
applications encapsulating Whiteflag messages in blockchain transactions.

• The Decentralised Protocol Layer is a protocol that is not controlled by a single entity. That is exactly what
the Whiteflag Protocol and the scope of this specification is.

• The Application Programming Interface (API) layer contains the solutions that allow software to interface with
the Whiteflag Protocol. These APIs may provide useful additions to the protocol such as handling, tracking and
searching of Whiteflag messages.

• The Application Layer is the part of the stack that comprises the applications that are actually used by the
end-users. These might be existing classical applications such as databases in use by various organisations, or
newly developed web applications or smartphone apps that can send, receive, filter, analyse messages.

2.3 References

2.3.1 International Rules & Regulations

2.3.1.1 International Humanitarian Law A. Convention (IV) respecting the Laws and Customs of War on Land
and its annex: Regulations concerning the Laws and Customs of War on Land. The Hague, 18 October 1907.
B. Convention (I) for the Amelioration of the Condition of the Wounded and Sick in Armed Forces in the Field.
Geneva, 12 August 1949.
C. Protocol additional to the Geneva Conventions of 12 August 1949, and relating to the Adoption of an Additional
Distinctive Emblem (Protocol III), 8 December 2005.
D. Convention (III) relative to the Treatment of Prisoners of War. Geneva, 12 August 1949.

4

E. Convention (IV) relative to the Protection of Civilian Persons in Time of War. Geneva, 12 August 1949.
F. Protocol Additional to the Geneva Conventions of 12 August 1949, and relating to the Protection of Victims of
International Armed Conflicts (Protocol I), 8 June 1977.
G. Convention on the Safety of United Nations and Associated Personnel. New York, 9 December 1994.
H. Treaty on the Protection of Artistic and Scientific Institutions and Historic Monuments (Roerich Pact). Washington,
15 April 1935.
I. The 1954 Hague Convention for the Protection of Cultural Property in the Event of Armed Conflict and its two
(1954 and 1999) Protocols, United Nations Educational, Scientific and Cultural Organization (UNESCO).

2.3.1.2 International Standards J. IMO IA994E International Code of Signals, 2005 Edition.
K. Disaster Category Classification and peril Terminology for Operational Purposes, Centre for Research on the
Epidemiology of Disasters (CRED) and Munich Reinsurance Company (Munich RE), October 2009.
L. Economic Infrastructure Common Reporting Standard Codes, Organisation for Economic Cooperation and Develop-
ment (OECD).

2.3.2 Technical Standards

2.3.2.1 Communication and Data Format Standards M. RFC 3339, Date and Time on the Internet: Timestamps,
July 2002, internet: https://www.ietf.org/rfc/rfc3339.txt
N. RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005, internet: https://www.ietf.org/rfc/
rfc3986.txt
O. RFC 4627, The application/json Media Type for JavaScript Object Notation (JSON), July 2006, internet:
https://www.ietf.org/rfc/rfc4627.txt
P. RFC 7515, JSON Web Signature (JWS), May 2015, internet: https://www.ietf.org/rfc/rfc7515.txt
Q. ISO 8601, Date and Time Representation
R. ISO 6709, Standard representation of geographic point location by coordinates

2.3.2.2 Cryptographic Standards S. OpenSSL Implementation of the Elliptic Curve Diffie-Hellman (ECDH)
algorithm, internet: https://wiki.openssl.org/index.php?title=Elliptic_Curve_Diffie_Hellman&oldid=1558
T. OpenSSL Implementation of the Advanced Encryption Standard (AES)
U. RFC 5639, ECC Brainpool Standard Curves & Curve Generation, March 2010, internet: https://www.ietf.org/rfc/
rfc5639.txt
V. RFC 5869, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), internet: https://www.rfc-editor.
org/rfc/rfc5869.txt

2.4 High-level Functional Overview

2.4.1 Blockchain and Communication Functionality

2.4.1.1 General A blockchain is a shared database that maintains a continuously-growing list of ordered records
called blocks, each containing a timestamp and a hash-based link to a previous block going all the way back to the
first block.
Blockchain networks are open source distributed computing systems with high byzantine fault tolerance: secure by
design and inherently resistant to modification of the data; once recorded, the data in a block cannot be altered
retroactively.
Therefore, a blockchain can be seen as an open, distributed ledger that can record transactions between parties
efficiently and in a verifiable and permanent way. This makes blockchains very suitable for the recording of events and
messages.

5

https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc7515.txt
https://wiki.openssl.org/index.php?title=Elliptic_Curve_Diffie_Hellman&oldid=1558
https://www.ietf.org/rfc/rfc5639.txt
https://www.ietf.org/rfc/rfc5639.txt
https://www.rfc-editor.org/rfc/rfc5869.txt
https://www.rfc-editor.org/rfc/rfc5869.txt

The Whiteflag Protocol defines the messages for signs and signals used in armed conflicts and for disasters, and it
defines how those messages can be sent on, in principle, any blockchain network by encapsulating them in transactions.
A messages is recorded in the database when such a transaction (including the encapsulated data) gets included in a
new block.
The usage of the Whiteflag Protocol on one or more specific blockchain network(s), establishes what in this specification
is called the Whiteflag Messaging Network, or just “the network”, and can be seen as what is sometimes called a
Blockchain Overlay Network.

2.4.1.2 Originator and Account The originator is a specific organisation or person that sends Whiteflag Messages
on the Whiteflag Network. The originator’s identity is established upon initial entry to the network. An originator may
use multiple accounts on the blockchain network. Although an account may use multiple (deterministic) addresses,
the usage of more than one address by a single account is not recommended for Whiteflag.
It is only required for an originator to provide identity information before sending messages; it is not required to
provide identity information to receive messages, as anyone can observe what is happening on the blockchain.

2.4.1.3 Authentication mechanisms An originator must introduce itself on the Whiteflag Network and provide
identity information with one or more initial authentication messages. An initial authentication message contains the
self-chosen name of the originator, and a method to verify that the originator’s blockchain address is under control by
the person or organisation the originator claims he is.
Currently, two basic methods of verification are supported by the protocol.

1. The first method makes use of an internet resource, such as a web site, under control of the originator. The
initial authentication message of the originator contains an Uniform Resource Locator (URL) to the internet
resource, where the originator posts the corresponding blockchain address, along with its proclaimed name,
both signed with a digital signature using the address’ secret private key. Anyone can now validate that the
blockchain address is under control by the originator by performing a check on the validity of the digitally signed
message using the blockchain address’ public key. This verification method assumes that the originator is in
control of the internet resource specified in the initial authentication message, and can therefore be associated
with that internet resource. As a result, the initial trustworthiness of the identity is as strong as the internet
resource being used: obviously this differs between an SSL-secured web site of an acclaimed organisation and
for instance a pseudonymous social media post. Although an internet site is vulnerable to being compromised
and an attacker could alter the authentication data on the internet resource, this will never result in a valid
digital signature as long as the private key remains secret.

2. The second method uses a pre-shared token. The originator and a receiver exchange a token, which is not known
to anybody. The the originator identifies himself by putting a combined hash of the token and the blockchain
account in the initial authentication message. The receiver can verify now that the claimed blockchain address
actually belongs to the originator who was in prior possession of the token. Note that the secret token itself is
not revealed. The originator may do this multiple times with different tokens, different accounts and/or different
receivers, and any combination of those.

The initial authentication can be enhanced by using multiple initial authentication messages, i.e. by combining both
verification methods, and also use multiple tokens and URLs. Additionally, the protocol allows other participants
to confirm the originator’s identity, which is especially useful if those confirming participants have well-established
identities.
For blockchains that encourage or require to use a different address for each transaction, deterministic key chains are
used to link the authentication message both to the blockchain account as well as to other messages sent by the same
originator but with different addresses.
The authentication mechanism is described in detail in 2.4.2.2 Management Messages (initial authentication message)
and Joining and Leaving the Whiteflag Network (protocol for initial authentication). After initial authentication, the
Whiteflag Protocol utilizes the authentication mechanism of the underlying blockchain.
As means for digital identification on the internet are still evolving, it is anticipated that additional methods will be
added in future versions.

2.4.1.4 Communications Security The Whiteflag Protocol leverages blockchain technology to ensure data integrity,
non-repudiation and historical continuity. The underlying blockchain(s) ensure(s) that any message ever sent will be
verifiable, unalterable and available to anybody, even to participants that start to use the protocol later in time.

6

Blockchain networks using the proof-of-work consensus model (Nakamoto consensus) timestamp transactions by
hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work.
The timestamp proves that the data must have existed at the time in order to get into the hash. Each timestamp
includes the previous timestamp in its hash, forming a chain, with each additional timestamp reinforcing the ones
before it. The hash chain of blocks provides an unchangeable historical record, which is verifiable by anyone.
Nodes can leave and rejoin a blockchain network and thus the Whiteflag Network at will, accepting the proof-of-work
chain as validation of what happened while they were gone. Upon rejoining, missing blocks are downloaded, verified
and added to the nodes’ local copy of the database until it has caught up with the network and is in sync (again).

2.4.1.5 Data Security The Whiteflag Protocol the protocol provides optional message confidentiality using an AES
based encryption scheme to encrypt the message contents. This is described in detail in 4.1.4 Encryption.
The encryption scheme allow for both Diffie-Hellman negotiated keys and pre-shared keys. The Whiteflag Protocol
specifies the Diffie-Hellman key exchange, but does not specify how pre-shared encryption keys should be managed or
distributed. It is between the originator and recipient to agree on a secure key exchange procedure.

2.4.2 Message Functionality

2.4.2.1 Functional Messages The following Functional Messages are specified in this standard. These messages
are to send a sign or signal as defined in international standards, and to provide additional information.

Code Name Description
P ProtectiveSign Sign to mark objects under the protection of international law
E EmergencySignal Signal to send an emergency signal when in need of assistance
D DangerSign Sign to mark a location or area of imminent danger, e.g. an area under

attack, land mines, disaster, etc.
S StatusSignal Signal to provide the status of an object, or specifically for persons:

give a proof of life
I InfrastructureSign Sign to mark critical infrastructure, e.g. roads, utilities, water

treatment, hospitals, power plants etc.
M MissionSignal Signal to provide information on activities undertaken during a mission
Q RequestSignal Signal to perform requests to other parties
R Resource Message to point to an internet resource
F FreeText Message to send a free text string

A specific Functional Message has a single meaning. For example, a Danger Sign is just that: a Danger Sign, which
does not imply that the originator is in danger or requires assistance. In such a case, the originator must send an
emergency signal.
However, a Functional Message may be related to an earlier Functional Message by referencing it. In this way,
sequences of message can be created, e.g. for moving objects (by updating the coordinates of a Protective Sign), or
requesting assistance for an object under attack (by sending an Emergency Signal referring to a Status Signal referring
to a Danger Sign). Message sequencing is described in detail in 5.4.2. Message Sequences.

2.4.2.2 Management Messages A number of management messages are defined to provide additional means to
verify the validity of the blockchain address and related account, to support cryptographic functions and to test
connectivity and functionality.

Code Name Description
A Authentication Message introducing the sender on the network with the sender’s

authentication data
K Crypto Message for management of keys and parameters of cryptographic

functions
T Test Message that can be used for testing Whiteflag functionality by

applications

7

2.4.2.3 Duress Indicator The Whiteflag Protocol provides duress functionality, i.e. an indicator that a message
has been sent under (threat of) violence, or other pressure and should therefore be interpreted with caution.
This functionality is especially useful for implementations of the protocol in devices used by workers and operators
in the field, where there is a higher risk of hijacking and kidnapping resulting in possible misuse of the Whiteflag
communication from an address of that account.
This standard only specifies how the duress indication is to be implemented in the protocol and how it should be
interpreted. The way the Duress Indicator will be triggered by a Whiteflag capable application or device, is outside
the scope of this standard, because this can be implemented in many different ways to suit different scenarios and
requirements.

2.4.3 Spatial information

Signs and signals about structures and areas may contain spatial information. The Whiteflag protocol uses the
EPSG:4326/WGS84 geodetic coordinate system. The protocol does (currently) not allow to provide height and
altitude information, and therefore can only be used to provide an object location on the earth’s surface.
Structures and areas can be represented using a limited number of geometric shapes: circles, rectangles and isosceles
triangles, and any combination of these.
The real-world structure or area must be fully contained by the geometric shapes representing it. The centre of a
geometric shape is determined by the location specified in the Whiteflag message. The orientation of the shape is the
angle between a virtual north oriented vector, and the first specified dimension of the shape: this is one of the sides
for a rectangle, and the height for an isosceles triangle; a circle does not have an orientation.

2.5 Minimum Implementation

When implementing this standard, it is not required to implement it in its entirety. However, any implementation of
the Whiteflag Protocol that sends messages on the network, must implement at a minimum the following functionality:

• the A message with at least one authentication option;
• the possibility to Recall, Update and Discontinue (Reference Codes 1, 2 and 4) any implemented sign or signal,

if such Reference Type is valid i.a.w. Reference options.
Also, for both senders and receivers, it is required that any part of this standard that is implemented complies with
this standard.

2.6 Implementation Considerations

This paragraph addresses a number of aspects that are technically not part of the standard, but require consideration
or are good practices for an interoperable and secure implementation of the Whiteflag protocol.

2.6.1 Trustworthiness of information

The Whiteflag Protocol provides a trusted communication channel in the sense that the originator is authenticated,
that messages cannot not be altered or disappear once recorded, all without the requirement of a trusted third party.
However, it is important to understand that a trusted communication channel does not by itself guarantee that the
information in a message is true. Upon reception of a Whiteflag message, it is up to the receiver to assess the
credibility of the information sent.
Nevertheless, the characteristics of the protocol do help in evaluating the credibility of information:

• The protocol ensures instant verification of the originator. Therefore, if a source is a priori considered reliable
by the recipient (which will be often the case for NGOs, journalists, UN peacekeepers, UNMAS, civil authorities,
etc.), the information can be considered to have a high level of credibility.

• The protocol allows information to be confirmed by another message of a different originator, and therefore
facilitates confirmation of the same information by multiple sources.

• The protocol provides duress functionality;

8

• Since all information is persistent, this allows for evaluating the reliability of a source over time by cross-checking
facts in retrospect.

A recipient may use the following levels of reliability of a source and credibility of information:

Reliability of Source Credibility of Information
A. Completely reliable 1. Confirmed by other sources
B. Usually reliable 2. Probably true
C. Fairly reliable 3. Possibly true
D. Not usually reliable 4. Doubtful
E. Unreliable 5. Improbable
F. Reliability cannot be judged 6. Truth cannot be judged

Also note that the protocol does not require all messages to be processed by a recipient. A recipient may choose to
ignore unknown addresses and accounts, to blacklist unreliable addresses and accounts, to filter messages about an
object outside a certain area of interest, create custom perspectives, merge information with other sources, etc. etc.

2.6.2 Account and Private Key Protection

The protocol does not define any specific setup of the blockchain account and private key protection. There are
however several important guidelines to consider.

1. Third party hosts should not be used to create accounts on a blockchain, because the identity of the sender
should be directly linked to the account. Using a third party to create an account creates attack vectors by
which an account could be compromised.

2. Public blockchains provide free, open source clients that facilitate the creation of accounts without any third
party involved. Also, it is very possible to create specific Whiteflag software that also manages the associated
blockchain accounts and cryptographic keys itself. In general, it is good practice to protect your account by
implementing security measures on machines and devices under your own control or supervision.

3. Third party hosts should not be used to store private keys. Storing the secret key outside your control or under
supervision creates attack vectors by which an account could be compromised.

4. To protect private keys from theft, hardware wallets, secure processing units and cold wallets should be used
when possible.

5. To protect an account from being compromised, multi-factor authentication as well as multi-signature accounts
may be used.

6. If account and/or related addresses need to be permanently de-activated, simply delete the private key(s), and,
if possible, send an A(4) message for every A(0) sent before.

2.6.3 Encryption and Key Exchange

The protocol provides the option to encrypt a message for confidentiality. When using encryption, a number of
considerations should be taken into account:

1. Even if messages are encrypted, information may leak through usage patterns. Therefore, it is advised not to use
the same blockchain addressed and the same proof-of-identity for both encrypted and unencrypted messages.

2. The security of encryption relies largely on the actual implementations.
3. All messages are persistent on the blockchain and it should be assumed that at some point in the future

messages can and will be decrypted. Therefore, only use dedicated keys, and only encrypt information that is
time-sensitive, i.e. information that will not be valid or relevant anymore over time, such as the status or the
location of a moving object.

2.6.4 Processing and Storage of Messages

On the Whiteflag Network, messages must be formatted and processed as indicated in this standard. Additionally,
this standard defines how messages and message sequences should be semantically interpreted.
To help implementing and validating Whiteflag Messages, Annex B provides a JSON schema that describes the
messages, which might be of beneficial use for application developers.

9

However, strictly speaking, this schema is outside the scope of this standard: firstly because the Whiteflag Messages
sent on the network are not JSON-formatted, and secondly because this standard does deliberately not specify how
messages are to be processed and stored by applications (an application might very well use XML instead of JSON).
Nevertheless, it is recommended to use a JSON format compliant with this schema for open APIs.

2.7 Note on the notation of Messages and Message Sequences

For documentation and software development purposes, messages codes and message sequences might be written as
follows:

• a message may be referred to by its message code, e.g. T for a test message;
• a specific sign or signal may be indicated by the combination of message and subject code, e.g. E01 for a

distress signal;
• a reference indicator may be written in between brackets after the message code, e.g. A(2) for an update to an

earlier A message;
• an encrypted message is written between square brackets, e.g. [Q(0)14];
• the originator may be indicated behind the message code and reference indicator, e.g. A(0)X is an original

authentication message from X;
• the symbol < is used as a pointer in the message sequence; the symbol is repeated to indicate to which message

is referred, e.g. << means two messages before.
For example, a message from originator X for relating an area under attack to an existing protective sign from a
hospital H may be written as P31(0)H < D10(5)X. When the attack ends and the status of the hospital is provided,
the full sequence will read: P31(0)H < D10(5)X < D10(4)X <<< S23(5)H.

10

3 Use Case Examples

(moved to Annex F)

11

4 Message Format

4.1 Message Structure

4.1.1 Representations

A Whiteflag message can have different representations at different levels of the protocol stack:
• at the Blockchain Overlay Network Layer (i.e. the level at which the Whiteflag Network is established) the

message is represented as a compressed binary string, and optionally encrypted;
• at the Decentralised Protocol Layer, a message is represented as an uncompressed and unencrypted concatenated

character string comprised of the message fields;
• at the API layer, a message and its message fields can have any appropriate representation using a structured

language, such as JSON or XML;
The standard describes the uncompressed and unencrypted concatenated character string at the Decentralised Protocol
Layer, and how these messages are compressed into a binary string, and optionally encrypted.

4.1.2 Encoding

An uncompressed and unencrypted Whiteflag Message consists of:
• the Message Header (described in 4.2 Message Header), which is the same for all messages and consists of 7

fields with a total length of 71 bytes;
• the Message Body (described in 4.3 Message Body), of which the fields and number of bytes per field differ

between message types, and is therefore variable in length.
The individual bytes of an uncompressed and unencrypted messages are encoded using a single 7-bit/1-byte UTF-8
code unit, allowing the usage of UTF-8/Unicode code points U+0000 through U+007F, which are identical to the first
128 characters of the ASCII-set.
Depending on the usage of the field, not all characters/code points are allowed for each field. The field descriptions
of the message header and body in 4.2 Message Header and in 4.3. Message Body, use the following characters to
indicate which subset of characters is valid:

• c indicates any valid 1 byte UTF-8/Unicode character, i.e. UTF-8 code points U+0000 through U+007F;
• a indicates that any alpha-numeric character (0-9, A-Z, a-z), i.e. UTF-8 code points U+0030 through U+0039,

U+0041 through U+005A, and U+0061 through U+007A;
• b indicates that only a binary character (0-1) is the be used, i.e. UTF-8 code points U+0030 trough U+0031;
• d indicates that only a decimal character (0-9) is to be used, i.e. UTF-8 code points U+0030 trough U+0039;
• x indicates that only a hexadecimal character (0-F) is to be used, i.e. UTF-8 code points U+0030 trough U+0039,

and U+0041 trough U+0046.
Instead of d, the letters y, m, d, h, m, and s are used in some field descriptions in and Message Body to indicate digits
representing years, minutes, days, degrees, hours, minutes and seconds respectively. Syntactically they are the same
as a decimal character indicated with a d, and therefore encoded and compressed in the same way, but semantically
they are different.
Capitals used in the field format descriptions of the message header and body in 4.2 Message Header and in 4.3
Message Body, including capitals of the above, indicate that such a character is to be used literally.
Before the message is embedded in a blockchain transaction, the message is compressed and optionally encrypted as
described below.

4.1.3 Compression

Whiteflag messages must be compressed to allow usage on blockchains with limited space for custom information,
and to improve optional encryption. Compression of the message is done as follows:

• all fixed characters are omitted, except for the Prefix field;
• binary characters (b), binary indicators and number signs are compressed to 1 bit;

12

• decimal and hexadecimal characters (d and h) are compressed to a half-byte (4 bits) unsigned binary coded
decimal/hexadecimal.

The descriptions of the message header and body in 4.2 Message Header and in 4.3 Message Body, show how the
compression must be applied to each field.

4.1.4 Encryption

The third field of the message is an indicator for which encryption is being used. This standard currently only provides
limited support for encryption, but allows implementation specific encryption mechanisms.
If encryption is used, the whole message must be encrypted, except for the Prefix, Version and
EncryptionIndicator, which must never be encrypted.
Note that, depending on the encryption algorithm used, the resulting length of the message may differ from the
unencrypted message length, which may complicate the embedding of the message in a transaction on certain
blockchains.

4.1.5 Embedding

To finally send the message, after compression and encryption, the message is embedded in a blockchain transaction.
How the message is embedded in the transaction depends on the blockchain and is specified in Annex A.

4.2 Message Header

4.2.1 Generic Message Header

All messages use the same generic message header, specified below.

Byte
Index

Byte
Length

Field Usage
Uncompressed
Encoding

Compressed
Encoding

0-1 2 Prefix Identifies the message as a
whiteflag message

WF 2x 8-bit UTF-8

2 1 Version Indicates which version of the
standard is used to generate the
message

a 1x 8-bit UTF-8

3 1 EncryptionIndicatorIndicates if and which encryption
is used

a 1x 8-bit UTF-8

4 1 DuressIndicatorIndicates whether the message
was sent under force or threat

b 1x 1-bit binary

5 1 MessageCode Indicates the type of message a 1x 8-bit UTF-8
6 1 ReferenceIndicatorIndicates how this message relates

to an earlier message
x 1x 4-bit unsigned

binary coded
hexadecimal

7-70 64 ReferencedMessageBlockchain dependent reference
to a related earlier message

xxxxxxxxxx
...
xxxxxxxxxx

64x 4-bit unsigned
binary coded
hexadecimal

4.2.1.1 Generic Message Header Fields

4.2.1.2 Prefix Field The Prefix field is a fixed value field to easily identify Whiteflag Messages on the blockchain.
The filed must contain two 1-byte UTF-8 encoded characters WF.

4.2.1.3 Version Field The Version field indicates which version of the standard is used as the specification for the
message. For implementations based on this version of the specification, the field must be a 1-byte UTF-8 encoded

13

character 1.

4.2.1.4 Encryption Indicator Field The EncryptionIndicator field specifies how if and how a message is
encrypted for confidentiality. The contents of the field must be a 1-byte UTF-8 encoded alpha-numeric character
i.a.w. the following table.

Code Encryption Usage
0 No encryption No encryption is used
1 aes-256-ctr-ecdh Message is encrypted using 256-bit key AES counter mode with an ECDH

negotiated key
2 aes-256-ctr-psk Message is encrypted using 256-bit key AES counter mode with a pre-shared

key
3-9 (reserved) Must not be used
(other) (private use) Encrypted with a method indicated by the value, but specific to the application

or originator

4.2.1.5 Duress Indicator Field The DuressIndicator field value must be 0, unless the sign or signal was sent
under threat or force. In that case the DuressIndicator field must be 1.
See Duress Indicator for further considerations on the duress functionality.

4.2.1.6 Message Code Field The MessageCode field specifies the message type. The contents of the field must be
a 1 byte UTF-8 encoded alpha-numeric character value corresponding with a message type defined in this specification.
A message with an invalid, i.e. undefined, message code, must be ignored.

4.2.1.7 Reference Indicator Field The ReferenceIndicator field specifies how a message relates to an earlier
message. The contents of the field must be a 1-byte UTF-8 encoded value from the following table.

Value Reference
Type Meaning Usage

0 Original This message provides new information
and is not related to an earlier message.

May be used by any account. Must be used if no
other reference type is used.

1 Recall The originator recalls the referenced
message; the referenced message must
be ignored.

May only be used by the same account of the
referenced message. The information in this
message must repeat the referenced message.

2 Update This message provides updated
information and replaces the
information in the referenced message.

May only be used by the same account of the
referenced message. The information that did
not change must be the same as in the
referenced message.

3 Add This message adds additional
information to the referenced message,
i.e. ties two messages together.

May only be used by the same account of the
referenced message.

4 Discontinue The originator discontinues the
referenced message, i.e. the information
or action is no longer valid.

May only be used by the same account of the
referenced message. The information in this
message must repeat the referenced message.

5 Relate The information in this message directly
relates to the information or action in
the referenced message.

May be used by any account, and may reference
messages from any other account.

6 Confirm The originator confirms the information
or action in the referenced message.

May be used by any account of a different
originator than of the referenced message. The
information in this message must repeat the
referenced message.

7 Acknowledge The originator acknowledges the receipt
of the referenced message, but the
information itself is not confirmed.

May be used by any account of a different
originator than of the referenced message. The
information in this message must repeat the
referenced message.

14

Value Reference
Type Meaning Usage

8 Comply The originator will comply with and/or
act according to the referenced
message, but the information itself is
not confirmed.

May be used by any account of a different
originator than of the referenced message. The
information in this message must repeat the
referenced message.

9 Reject The originator does not agree (any
more) with the information or action in
the referenced message.

May be used by any account of a different
originator than of the referenced message. The
information in this message must repeat the
referenced message.

A message with a Reference Indicator that does not comply with these rules must be ignored. However, a recipient
may use non-compliant messages to evaluate the reliability of the originator.
By referencing other messages, message sequences can be created. However, not every message type and reference
type may reference every other message type and reference type. The rules for referencing and functionality of message
sequences are specified in detail in 5.4 Referencing.

4.2.1.8 Referenced Message Field The ReferencedMessage field is a 64-byte UTF-8 encoded string containing
a unique hexadecimal identifier of the referenced message. This allows for referencing a 256-bit hash. Since other
messages can only be identified using the transaction identifier of the underlying blockchain, the identifier depends on
the underlying blockchain. If the underlying blockchain uses a hash larger than 256 bits, the first 256 bits of the hash
should be used. The transaction identifiers of the most common blockchains are shown in Annex A.
If the ReferenceIndicator field is 0, the ReferencedMessage field must be ignored by the receiver. This allows
the field to be filled with a random 64-byte UTF-8 encoded hexadecimal string, e.g. to prevent a large part of the
message to be all zeros when encrypting it.

4.3 Message Body

4.3.1 Functional Messages: Signs & Signals

4.3.1.1 Signs & Signals Message Fields The message body of functional messages representing a sign (message
types P, D and I) or a signal (message types E, S, M and Q), must contain the following fields:

Byte
Index

Byte
Length

Field Usage
Uncompressed
Encoding

Compressed
Encoding

0- 70 71 Message
Header

See Generic Message Header Fields

71-
72

2 SubjectCode Indicates the sign/signal type with
the value defined in Subject Code
Field

xx 2x 4-bit unsigned
binary coded
hexadecimal

73-
92

15 DateTime Indicates when the sign/signal is
valid, using an ISO 8601/ RFC 3339
timestamp

YYYY-MM-DDThh:mm:ssZ14x 4-bit unsigned
binary coded
decimal

93-
102

10 Duration Indicates how long the sign/signal
will be valid, using the ISO 8601
format

PddDhhHmmM 6x 4-bit unsigned
binary coded
decimal

103-
104

2 ObjectType Specifies the type of object the
sign/signal refers to

xx 2x 4-bit unsigned
binary coded
hexadecimal

105-
113

9 ObjectLatitudeSpecifies the object location in
decimal degrees latitude i.a.w. ISO
6709

_dd.ddddd 1x sign bit + 7x
4-bit unsigned
binary coded
decimal

15

Byte
Index

Byte
Length

Field Usage
Uncompressed
Encoding

Compressed
Encoding

114-
123

10 ObjectLongitudeSpecifies the object location in
decimal degrees longitude i.a.w. ISO
6709

_ddd.ddddd 1x sign bit + 8x
4-bit unsigned
binary coded
decimal

124-
127

4 ObjectSizeDim1Specifies the size of the object’s first
dimension in meters

nnnn 4x 4-bit unsigned
binary coded
decimal

128-
131

4 ObjectSizeDim2Specifies the size of the object’s
second dimension in meters

nnnn 4x 4-bit unsigned
binary coded
decimal

132-
134

3 ObjectOrientationSpecifies the object’s orientation in
degrees

nnn 3x 4-bit unsigned
binary coded
decimal

In addition, the message body of message type Q may be extended with the following fields:

Byte
Index

Byte
Length

Field Usage
Uncompressed
Encoding

Compressed
Encoding

135-
136

2 ObjectType1 Specifies the type of object for
which the request is made

xx 2x 4-bit unsigned
binary coded
hexadecimal

137-
138

2 ObjectType1QuantSpecifies the number of objects for
which the request is made

dd 2x 4-bit unsigned
binary coded
decimal

These fields may be repeated for additional objects for which the request is made, e.g. bytes 139-142 may contain
additional ObjectType2 and ObjectType2Quant fields, etc.

4.3.1.2 Subject Code Field The SubjectCode field defines the actual sign or signal, and must be 2-byte UTF-8
encoded value from the following tables with subject codes for each sign/signal message type below. Common official
and/or visual equivalents for the defined signs and signals are shown in Annex E.

Message Code Usage Subject Code Usage / Meaning
P Protective Sign 00 Unspecified Protective Sign

01 White flag - Unspecified intent
02 White flag - Request for negotiation
03 White flag - Surrender
04-0F (reserved)
10 Unspecified Red Cross/Crescent/Crystal
11 Red Cross
12 Red Crescent
13 Red Crystal
14-1F (reserved for use by the IFRC)
20 United Nations
21-2F (reserved for use by the UN)
30 Unspecified Protected Zone
31 Hospital and Safety Zone
32 Prisoner of War Camp
33 Internment Camp
34-3F (reserved)
40 Civil Defence

16

Message Code Usage Subject Code Usage / Meaning
41-4F (reserved)
50 Unspecified Cultural Property
51 Monuments and Cultural Institutions
52 Cultural Property
53 Cultural Property under Special Protection
54-5F (reserved)
60 Works and Installations containing Dangerous Forces
61-6F (reserved)
70-FF (reserved)

4.3.1.2.1 Protective Signs References: P01-03 : i.a.w. Convention (IV) respecting the Laws and Customs of War
on Land and its annex: Regulations concerning the Laws and Customs of War on Land. The Hague, 18 October
1907 P11-12 : Convention (I) for the Amelioration of the Condition of the Wounded and Sick in Armed Forces in
the Field. Geneva, 12 August 1949. P13 : Protocol additional to the Geneva Conventions of 12 August 1949, and
relating to the Adoption of an Additional Distinctive Emblem (Protocol III), 8 December 2005. P20 : Convention
on the Safety of United Nations and Associated Personnel. New York, 9 December 1994. P31 : Convention (IV)
relative to the Protection of Civilian Persons in Time of War. Geneva, 12 August 1949 P32-33 : Convention (III)
relative to the Treatment of Prisoners of War. Geneva, 12 August 1949. P51 : Treaty on the Protection of Artistic
and Scientific Institutions and Historic Monuments (Roerich Pact). Washington, 15 April 1935 P52-53 : The 1954
Hague Convention for the Protection of Cultural Property in the Event of Armed Conflict and its two (1954 and 1999)
Protocols, United Nations Educational, Scientific and Cultural Organization (UNESCO) P60 : Protocol Additional to
the Geneva Conventions of 12 August 1949, and relating to the Protection of Victims of International Armed Conflicts
(Protocol I), 8 June 1977.

Message Code Usage Subject Code Usage / Meaning
E Emergency Signal 00 Unspecified Emergency

01 General Distress signal
02 General Urgency signal
03-0F (reserved)
10 Urgent Unspecified Assistance Required
11 Urgent Medical Assistance Required
12 Urgent Fire & Rescue Assistance Required
13 Urgent Law Enforcement Assistance Required
14 Urgent Disaster Response Required
15-1F (reserved)
20-FF (reserved)

4.3.1.2.2 Emergency Signals

Message Code Usage Subject Code Usage / Meaning
D Danger Sign 00 Unspecified Danger Area

10 War/Conflict/Terrorism - Unspecified Attack
11 War/Conflict/Terrorism - Direct Ground Attack
12 War/Conflict/Terrorism - Mortar/Artillery Attack
13 War/Conflict/Terrorism - Ground Bomb Attack
14 War/Conflict/Terrorism - Air Attack
15 War/Conflict/Terrorism - Complex Attack
16-19 (reserved)
1A War/Conflict/Terrorism - Chemical Attack
1B War/Conflict/Terrorism - Biological Attack
1C War/Conflict/Terrorism - Nuclear Attack
1D-1F (reserved)
20 Unspecified Hazardous Conflict Area
21 Hazardous Conflict Area - Mine Field

17

Message Code Usage Subject Code Usage / Meaning
22 Hazardous Conflict Area - UXOs
23 Hazardous Conflict Area - Chemical Contamination
24 Hazardous Conflict Area - Biological Contamination
25 Hazardous Conflict Area - Radiological Contamination
26 Hazardous Conflict Area - Nuclear Contamination
27 Hazardous Conflict Area - Surface-to-Air Threat
28-2F (reserved)
30 Unspecified Transport Accident
31 Transport Accident - Air
32 Transport Accident - Rail
33 Transport Accident - Road
34 Transport Accident - Boat
35-3F (reserved)
40 Unspecified Industrial Accident
41 Industrial Accident - Accident release (other than attack)
42 Industrial Accident - Explosion (other than attack)
43 Industrial Accident - Chemical explosion (other than attack)
44 Industrial Accident - Nuclear explosion/Radiation (other than attack)
45 Industrial Accident - Mine explosion
46 Industrial Accident - Pollution
47 Industrial Accident - Acid rain
48 Industrial Accident - Atmosphere pollution
49-4F (reserved)
50 Complex/Man-made Hazard - Complex Emergency
51 Complex/Man-made Hazard - Uncontrolled Banditry
52 Complex/Man-made Hazard - Uncontrolled Uprising
53 Complex/Man-made Hazard - Displaced Population
54 Complex/Man-made Hazard - Famine and Food Insecurity
55-5F (reserved)
60-9F (reserved)
A0 Unspecified Geophysical Disaster Area
A1 Geophysical Disaster Area - Earthquake
A2 Geophysical Disaster Area - Earthquake w/ Tsunami
A3 Geophysical Disaster Area - Volcano
A4 Geophysical Disaster Area - Dry Mass Movement - Rockfall
A5 Geophysical Disaster Area - Dry Mass Movement - Landslide
A6 Geophysical Disaster Area - Dry Mass Movement - Avalanche
A7 Geophysical Disaster Area - Dry Mass Movement - Subsidence
A8-AF (reserved)
B0 Unspecified Meteorological Disaster Area
B1 Meteorological Disaster Area - Unspecified Storm
B2 Meteorological Disaster Area - Storm - Tropical Cyclone
B3 Meteorological Disaster Area - Storm - Extra Tropical Cyclone
B4 Meteorological Disaster Area - Local Storm
B5-BF (reserved)
C0 Unspecified Hydrological Disaster Area
C1 Hydrological Disaster Area - General Flood
C2 Hydrological Disaster Area - Flash Flood
C3 Hydrological Disaster Area - Storm Surge
C4 Hydrological Disaster Area - Wet Mass Movement - Rockfall
C5 Hydrological Disaster Area - Wet Mass Movement - Landslide
C6 Hydrological Disaster Area - Wet Mass Movement - Avalanche
C7 Hydrological Disaster Area - Wet Mass Movement - Subsidence
C8-CF (reserved)
D0 Unspecified Climatological Disaster Area
D1 Climatological Disaster Area - Extreme Temp - Heat Wave
D2 Climatological Disaster Area - Extreme Temp - Cold Wave
D3 Climatological Disaster Area - Extreme Winter Condition
D4 Climatological Disaster Area - Drought

18

Message Code Usage Subject Code Usage / Meaning
D5 Climatological Disaster Area - Wildfire - Forest Fire
D6 Climatological Disaster Area - Wildfire - Land Fire
D7-DF (reserved)
E0 Unspecified Biological Disaster Area
E1 Biological Disaster Area - Unspecified Epidemic
E2 Biological Disaster Area - Viral Infectious Disease Epidemic
E3 Biological Disaster Area - Bacterial Infectious Disease Epidemic
E4 Biological Disaster Area - Parasitic Infectious Disease Epidemic
E5 Biological Disaster Area - Fungal Infectious Disease Epidemic
E6 Biological Disaster Area - Prion Infectious Disease Epidemic
E7 Biological Disaster Area - Insect Infestation
E8 Biological Disaster Area - Animal Stampede
E9-EF (reserved)
F0-FF (private use, i.e. not standardized)

4.3.1.2.3 Danger & Disaster Signs

Message Code Usage Subject Code Usage / Meaning
S Status Signal 00 Unspecified positive status

01-0F (reserved)
10 Proof of Life without further details
11 Proof of Life and Situation Normal
12 Proof of Life and Contact Requested
13 Proof of Life but Assistance Required
14-1F (reserved)
20 Object status unknown
21 Object functional without further details
22 Object functional and in good order
23 Object functional but damaged
24 Object not functional without further details
25 Object not functional and damaged
26 Object damaged without further details
28 Object destroyed
29-2F (reserved)
30-EF (reserved)
F0-FF (private use, i.e. not standardized)

4.3.1.2.4 Status Signals

4.3.1.2.5 Infrastructure Signs

Message Code Usage Subject Code Usage / Meaning
I Infrastructure 00 Unspecified infrastructure

01-0F (reserved)
10 Transportation - Unspecified transportation infrastructure
11 Transportation - Road or Highway
12 Transportation - Mass Transit System
13 Transportation - Railway
14 Transportation - Canal or Navigable Waterway
15 Transportation - Seaport
16 Transportation - Lighthouse
17 Transportation - Airport
18-1F (reserved)
20 Energy - Unspecified energy infrastructure

19

Message Code Usage Subject Code Usage / Meaning
21 Energy - Electrical transmission/distribution
22 Energy - Natural gas pipeline
23 Energy - Petroleum pipeline
24 Energy - Oil-fired power plant
25 Energy - Gas-fired power plant
26 Energy - Coal-fired power plant
27 Energy - Nuclear power plant
28 Energy - Hydro-electric power plant
29 Energy - Geothermal energy installation
2A Energy - Solar energy installation
2B Energy - Wind energy installation
2C Energy - Ocean power installation
2D Energy - Biomass installation
2E-2F (reserved)
30 Water management - Unspecified water facility
31 Water management - Drinking water distribution pipeline
32 Water management - Drinking water storage reservoir
33 Water management - Drinking water treatment facility
34 Water management - Waste water collection/disposal facility
35 Water management - Drainage system
36 Water management - Major irrigation system
37 Water management - Major flood control system
38 Water management - Coastal water management facility
39-3F (reserved)
40 Communication - Unspecified communication infrastructure
41 Communication - Postal service
42 Communication - Telephone land line
43 Communication - Telephone exchange system
44 Communication - Mobile phone network system
45 Communication - Television transmission station
46 Communication - Radio transmission station
47 Communication - Internet backbone
48 Communication - Internet core router
49 Communication - Undersea cable
4A-4F (reserved)
50 Public service - Unspecified public service
51 Public service - Hospital
52 Public service - School
53 Public service - Police station
54 Public service - Fire station
55-5F (reserved)
60 Solid waste management - Unspecified solid waste management facility
61 Solid waste management - Municipal garbage and recyclables collection
62 Solid waste management - Solid waste landfill
63 Solid waste management - Solid waste incinerator
64 Solid waste management - Materials recovery facility
65 Solid waste management - Hazardous waste disposal facility
66-6F (reserved)
70-EF (reserved)
F0-FF (private use, i.e. not standardized)

4.3.1.2.6 Mission Signals

Message
Code Usage Subject Code Usage / Meaning
M Mission 00 Unspecified Mission

01-0F (reserved)

20

Message
Code Usage Subject Code Usage / Meaning

10 Unspecified Humanitarian Mission
11-1F (reserved)
20 Unspecified Mission under Humanitarian Law
21 Humanitarian Law - Monitoring
22 Humanitarian Law - Visiting Prisoners of War and

Detained Persons
23 Humanitarian Law - Aid for Military Personnel - Health

Care for wounded, sick or shipwrecked personnel
24 Humanitarian Law - Aid for Civilian Population - General

Aid
25 Humanitarian Law - Aid for Civilian Population - Food

Distribution
26 Humanitarian Law - Aid for Civilian Population - Health

Care
27 Humanitarian Law - Aid for Civilian Population - Shelter
28 Humanitarian Law - Aid for Civilian Population - Restoring

Family Links
29 Humanitarian Law - Aid for Civilian Population -

Infrastructure Restoration
2A Humanitarian Law - Support to Local Government -

Advisory
2B Humanitarian Law - Support Mission - Administrative
2C Humanitarian Law - Support Mission - Logistics
2D-2F (reserved)
30 Unspecified Disaster / Emergency Response Operation
31-3F (reserved)
40 Unspecified Special Political Mission
41 Special Political Mission - Envoy
42 Special Political Mission - Sanction panel
43 Special Political Mission - Monitoring group
44 Special Political Mission - Field-based mission
41-4F (reserved)
50 Unspecified Diplomatic Mission
51-5F (reserved)
60 Unspecified Law Enforcement Operation
61-6F (reserved)
70 Unspecified Peace Operation
71 Peace Operation - Conflict prevention
72 Peace Operation - Peacemaking
73 Peace Operation - Peacekeeping
74 Peace Operation - Peacebuilding
75 Peace Operation - Peace enforcement
76-7F (reserved)
80 Unspecified Military Operation
81-8F (reserved)
90-EF (reserved)
F0-FF (private use, i.e. not standardized)

4.3.1.2.7 Request Signals

Message Code Usage Subject Code Usage / Meaning
Q Requests 00-0F (reserved)

10 Request for Cease Fire
11-1F (reserved)
20 Request for Area Access
21-2F (reserved)

21

Message Code Usage Subject Code Usage / Meaning
30-EF (reserved)
F0-FF (private use, i.e. not standardized)

4.3.1.3 DateTime Field The DateTime field must contain the moment in time using from when the sign or signal
is valid, using Coordinated Universal Time (UTC).
This timestamp need not to be identical to the timestamp of the blockchain transaction of the message: the sign or
signal may be valid from an earlier or future point in time and may therefore be earlier or later than the timestamp of
the blockchain transaction.
Based on ISO 8601 and RFC 3339, the DateTime field must be formatted as follows: YYYY-MM-DDThh:mm:ssZ,
where:

• yyyy are 4 digits for the calendar year
• mm are 2 digits for the number of the month; valid values are: 01-12
• dd are 2 digits for the day of the month using; valid values are: 01-31
• hh are 2 digits for the hour of day; valid values are: 00-23
• mm are 2 digits for the minutes; valid values are: 00-59
• ss are 2 digits for the seconds; valid values are: 00-60 (including a possible leap second)
• Z is literally the character “Z”, indicating UTC.

A message with an invalid DateTime field must be ignored.

4.3.1.4 Duration Field The Duration field may contain the time-period for how long the sign or signal is valid
counted from the date and time in the DateTime field. A sign or signal may be valid for a definite period with a
maximum of 99 days 23 hours and 59 minutes, or a minimum of 01 minute, or for an indefinite period.
Based on ISO 8601, the Duration field must be formatted as follows: PnnDnnHnnM (i.e. regular expression
\ˆP\[0-9\]{2}D\[0-9\]{2}H\[0-9\]{2}M\$), where:

• P is literally the character “P”, indicating that the string represents a period
• nn are 2 digits for the number of days; valid values are: 00-99
• D is literally the character “D”, indicating the previous digits represent the number of days
• nn are 2 digits for the number of hours; valid values are: 00-23
• H is literally the character “H”, indicating the previous digits represents the number of hours
• nn are 2 digits for the number of days; valid values are: 00-59
• M is literally the character “M”, indicating the previous digits represents the number of minutes

For a sign/signal to be valid for an indefinite period, the duration must be set to 0 as follows: P00D00H00M.
A message with an invalid Duration field must be ignored.

4.3.1.5 Object Type Field The ObjectType field contains a hexadecimal code to indicate to what sort of object
the sign or signal applies to. This information is optional and must be set to 00 if not used. However, it is encouraged
to use it, because it might be valuable for the receiver(s) of the message.

Code Object Type Usage
00 Not provided Object type is unknown
01-0F (reserved)
10 Unspecified group of people Unspecified number of humans together
11 Person An individual human
12 Small group of people 2- 10 humans together
13 Medium group of people 10- 100 humans together
14 Large group of people 100- 1000 humans together

22

Code Object Type Usage
15 Enormous group of people 1000-10000 humans together
12-1F (reserved)
20 Unspecified Area An area is a part of the earths surface, either on land or at sea.
21 Circular Area
22 Rectangle Area
23 Triangle Area
24-2F (reserved)
30 Unspecified Structure Immovable human made individual structures that are fixed to the

ground, such as buildings, installations, historic ruins, etc. For
non-fixed human made structures or a clustering of structures,
such as camps, an area object must be used.

31 Circular Structure
32 Rectangle Structure
33 Triangle Structure
34-3F (reserved)
40 Unspecified Land Vehicle An object used for transport over land
41-4F (reserved)
50 Unspecified Water Vehicle An object used for transport on water
51-5F (reserved)
60 Unspecified Air Vehicle An object for transport in the air
61-6F (reserved)
70 Unspecified Space Vehicle An object for transport in space
71-7F (reserved)
80 Unspecified goods Movable materiel, goods, cargo, supplies, etc.
80-8F (reserved)
90-EF (reserved)
F0-FF (private use) Private use, i.e. not standardized

The table below shows which object types may be used for which message subjects, and which combinations types are
not allowed.

Subject Code & Object Code
10-1F
Persons 20-2F Areas

30-3F
Structures

40-7F
Vehicles 80-8F Goods

P01-P0F White Flag
Protective Signs

allowed allowed allowed allowed X

P10-P1F Red Cr* Protective
Signs

allowed allowed allowed allowed allowed

P20-P2F UN Protective Signs allowed allowed allowed allowed allowed
P30-P3F Protected Zones X allowed allowed X X
P40-P4F Civil Defence
Protective Signs

allowed allowed allowed allowed allowed

P50-P5F Cultural Property
Protective Signs

X allowed allowed allowed allowed

P60-P6F Dangerous Forces
Protective Signs

X allowed allowed X allowed

E00-EFF Emergency Signals allowed X allowed allowed X
D00-D1F Attack Danger Signs X allowed allowed allowed allowed
D20-D2F Danger Area Signs X allowed X X X
D30-D4F Accident Danger
Signs

X allowed allowed allowed X

D50-D5F Uncontrolled Danger
Signs

X allowed X X X

DA0-DFF Disasters X allowed X X X
S00-S0F Generic Status
Signals

allowed allowed allowed allowed allowed

S10-S1F Proof-of-life Status
Signals

allowed X X X X

23

Subject Code & Object Code
10-1F
Persons 20-2F Areas

30-3F
Structures

40-7F
Vehicles 80-8F Goods

S20-S2F Object Status
Signals

X X allowed allowed allowed

I00-IEF Infrastructures X allowed allowed X X
M00-MEF Missions allowed allowed allowed allowed allowed
Q10-Q2F Requests X allowed X X X

4.3.1.6 Object Location Fields The ObjectLatitude and ObjectLongitude fields specify the location of the
centre of the object on, or projected on, the earth’s surface in decimal degrees latitude and decimal degrees longitude,
using the WGS84 datum (i.e. EPSG:4326). The vertical location (height or depth) cannot be provided.
Based on ISO 6709 - Standard representation of geographic point location by coordinates, the ObjectLatitude fields
must be formatted as follows: _dd.ddddd (i.e. regular expression \ˆ\[+-\]\[0-9\]{2}\\.\[0-9\]{5}\$), where:

• The digits represent the north-south longitude; valid values are: -90.00000 to +90.00000
• _ is either + or - to denote north (+) or south (-).

Based on ISO 6709 - Standard representation of geographic point location by coordinates, the ObjectLongitude
fields must be formatted as follows: _ddd.ddddd (i.e. regular expression \ˆ\[+-\]\[0-9\]{3}\\.\[0-9\]{5}\$),
where:

• The digits represent the east-west latitude; valid values are: -180.00000 to +180.00000

• _ is either + or - to denote east (+) or west (-).
The object location must be specified for Protective Signs and Danger Signs (Message Codes P and D).
The object location may be used for Emergency Signals and Status Signals (Message Codes E and S), e.g. for security
reasons. If the object location is omitted, the coordinates must be set to the following value: +99.99999+999.99999.
The object location may not be omitted in a Status Signal (Message Code S) referencing a Protective Sign or a
Danger Sign (Message Code P or D).

4.3.1.7 Object Size Fields The ObjectSizeDim1 and ObjectSizeDim2 fields may be used to specify the horizontal
surface dimensions of areas and structures in meters. Valid values are: 0001 to 9999. The value of a dimension that
is omitted, must be set to 0000.
For (groups of) persons (Object Codes 10-1F), the Object Size may be provided. The Object Size represents the area
in which the person(s) is/are located. The area must be defined as small as possible.
For shaped areas and structures (Object Codes 21-2F and 31-3F), the Object Size must be provided. For unspecified
areas and structures (Object Codes 20 and 30) the dimensions are by definition unknown, and must be omitted. For
all other objects, the Object Size must be omitted.
For circle shaped areas and structures (Object Codes 21 and 31), the ObjectSizeDim1 field represents the radius;
the ObjectSizeDim2 field has no meaning for circle shaped areas and structures and must be omitted.
For rectangle shaped areas and structures (Object Codes 22 and 32), the ObjectSizeDim1 field represents the
length of the side for which the orientation is specified with the Object Orientation Field; the ObjectSizeDim2 field
represents the other side.
Triangle shaped areas and structures (Object Codes 23 and 33) are isosceles triangles, with the ObjectSizeDim1
field representing the triangle height and the ObjectSizeDim2 represents the base.

4.3.1.8 Object Orientation Field The ObjectOrientation field may be used to specify the orientation of the
object in decimal degrees, where 000 means North.
Valid values are: 000 to 359. If the object’s orientation is omitted, the field value must be set to 999.
If an Object Size is specified using the ObjectSizeDim1 and ObjectSizeDim2 fields, then the ObjectOrientation
field must be specified as well. If the Object Size is not specified, then the Object Orientation must be omitted.

24

4.3.1.9 Object Request Fields The object request fields ObjectType* and ObjectType*Quant may only be used
in Q messages and must be used together, with the object type field before the quantity field.
These fields may be repeated up to seven (7) times, giving a maximum of eight (8) objects with their respective
quantity.
The ObjectType* field contains a hexadecimal code to indicate what sort of object the request applies to. The values
correspond with those of the ObjectType field as specified in 4.3.1.5, with the following restrictions:

• when referring to persons, the exact number of person must be specified and therefore the 12-1F may not be
used;

• unmovable objects, i.e. 20-2F areas and 30-3F structures,may not be used.
Note that in accordance with 4.3.1.5, the object code of a Q message itself must represent an area, i.e. code 20-2F.
Valid values for an ObjectType*Quant field are 00 to 99. If the quantity of an object is unknown, then the respective
ObjectType*Quant field must be 00.

4.3.2 Functional Messages: Resource

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed Encoding

0-70 71 Message
Header

See Generic Message
Header Fields

71 1 ResourceMethod Indicates the mechanism
for pointing to a resource

x 1x 4-bit unsigned
binary coded
hexadecimal

72-111* 40* ResourceData Provides the data
required to find the
resource

cccccccccc
...
cccccccccc

40x 8-bit UTF-8

4.3.2.1 Resource Message Fields

4.3.2.2 Resource Method Field The ResourceMethod field defines the mechanism for pointing to a resource.
The field must be 1-byte UTF-8 encoded hexadecimal character. Currently only one resource method has been defined:

Code Resource Method Usage
0 (reserved) Must not be used
1 InternetResource Reference to an internet resource
2-9 (reserved) Reserved for future resource referencing mechanisms
A-F (private use) Private use, i.e. not standardized

4.3.2.3 Resource Data Field The content of the ResourceData field depends on the resource method:
• If the ResourceMethod method indicates a reference to an internet resource (resource method 1), then the

ResourceData field must contain a valid URL.
The ResourceData field may be longer than 40 bytes, if allowed by underlying blockchain. If the length of the
ResourceData field is insufficient to provide the complete URL, an additional Reference Message may be sent with
the rest of the URL using reference code 3.

4.3.3 Functional Messages: Free Text

Byte Index Byte Length Field Usage Uncompressed Encoding Compressed Encoding
0-70 71 Message Header See Generic Message Header Fields
72-111* 40* Text Free text cccccccccc ... cccccccccc 40x 8-bit UTF-8

25

4.3.3.1 Free Text Message Fields

4.3.3.2 Text Field The Text field can be used to send 40x 1-byte UTF-8 encoded text, typically to provide
additional information about a sign or signal, using reference code 3 or 5.
The Text field may be longer than 40 bytes, if allowed by underlying blockchain. If the length of the Text field is
insufficient to provide all text, an additional text message may be sent using reference code 3.

4.3.4 Management Messages: Authentication

4.3.4.1 Authentication Message Fields The message body of management messages for (initial) authentication
(message type A), must contain the following fields:

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed Encoding

0-70 71 Message
Header

See Generic Message
Header Fields

71 1 VerificationMethodIndicates the
authentication
mechanism

x 1x 4-bit unsigned
binary coded
hexadecimal

72-111* 40* VerificationDataProvides the data
required for
authentication

cccccccccc
...
cccccccccc

25x 8-bit UTF-8

4.3.4.2 Verification Method Field The VerificationMethod field defines the mechanism for authentication of
the blockchain address and related account, and must be a 1-byte UTF-8 encoded hexadecimal character from the
following table with codes for each verification method:

Code Verification Method Usage
0 (reserved) Must not be used
1 InternetResource Authentication through an internet resource
2 SharedToken Authentication by a secret pre-shared token
3-9 (reserved) Reserved for future authentication mechanisms
A-F (private use) Private use, i.e. not standardized

4.3.4.3 Verification Data Field The content of the VerificationData field depends on the verification method:
• If the InternetResource method is specified (verification method 1), then the VerificationData field must

contain a valid URL;
• If the SharedToken method is specified (verification method 2), then the VerificationData field must contain

the verification token.
The VerificationData field may be longer than 40 bytes, if allowed by underlying blockchain. If the length of the
VerificationData field is insufficient to provide the complete URL or verification token, an additional Authentication
Message may be sent with the rest of the URL or verification token using reference code 3.

4.3.5 Management Messages: Cryptographic Support

4.3.5.1 Cryptographic Support Message Fields The message body of management messages for cryptographic
support (message type K), must contain the following fields:

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed Encoding

0-70 71 Message
Header

See Generic Message
Header Fields

26

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed Encoding

71-72 2 CryptoDataType Indicates the type of
data in this message

xx 2x 4-bit unsigned
binary coded
hexadecimal

73-144* 80* CryptoData Contains the
cryptographic data

xxxxxxxxxx
...
xxxxxxxxxx

128x 4-bit unsigned
binary coded
hexadecimal

4.3.5.2 Cryptographic Data Type Field The CryptoDataType field defines the type of cryptographic key data
to be exchanged, and must be a 2-byte UTF-8 encoded hexadecimal character from the following table with codes for
each key type:

Code Crypto Data Type CryptoData field usage
00 (reserved) Must not be used; reserved for future use
01 HDExtPubKey Serialised hierarchical deterministic extended public key
02-09 (reserved) Must not be used; reserved for future use
0A ECDHPubKey Elliptic Curve Diffie–Hellman public key exchange
0B-0F (reserved) Must not be used; reserved for future use
10 (reserved) Must not be used; reserved for future use
11 InitVector Initialisation Vector for encryption method 1
12-1F (reserved) Must not be used; reserved for future use
20 (reserved) Must not be used; reserved for future use
21 InitVector Initialisation Vector for encryption method 2
22-2F (reserved) Must not be used; reserved for future use
20-99 (reserved) Must not be used; reserved for future encryption features
A0-FF (private use) Private use, i.e. not standardized

4.3.5.3 Cryptographic Data Field The content of the CryptoData field is determined by the CryptoDataType
field value as follows.

• When the data type is HDExtPubKey (code 01), the data field must contain the serialised extended public key
used to derive the deterministic public keys (and addresses).

• When the data type is ECDHPubKey (code 0A), the data field must contain a compressed elliptic curve public
key for a Diffie-Hellman key exchange.

• When the data type is InitVector (code 11 or 21), the data field must contain the 128-bit initialisation vector
required to decrypt a message encrypted with the algorithm indicated with encryption indicator code 1 and 2
respectively.

The CryptoData field may be longer than 64 bytes if allowed by underlying blockchain. If the length of the CryptoData
field is insufficient to provide the full data, an additional Cryptographic Support Messages may be sent with the rest
of the key data using reference code 3.
Usage of the Cryptographic Support Message and the data types is detailed in 5.2 Cryptographic Support Functions.

4.3.6 Management Messages: Test

4.3.6.1 Test Message Fields The message body of test messages has an identical set of fields as signs & signals
messages have, which allows to test sign and signals. A test message must contain the following fields:

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed
Encoding

0-70 71 Message Header See Generic Message
Header Fields

71 1 PseudoMessageCodeIndicates the message type
that is tested

a 1x 8-bit UTF-8

27

Byte
Index

Byte
Length Field Usage

Uncompressed
Encoding

Compressed
Encoding

72 Test Message
Body

See Message Body

4.3.5.2 Pseudo Message Code The PseudoMessageCode field indicates which sign/signal message is tested. The
contents of the field must be a 1-byte UTF-8 encoded alpha-numeric character value corresponding with one of the
message types defined in 2.4.2 Message Functionality.

4.3.5.3 Other Test Message Fields All other test message fields are identical in use as the equivalent fields
sign/signal message, as described in 4.3 Message Body, with the difference that the fields are shifted 1 byte / 8 bits.
The field names must be preceded by Test when used in a test message.

28

5 Protocol

5.1 Joining and Leaving the Whiteflag Network

5.1.1 Initial Authentication

It is not required to perform initial authentication and provide identity information to receive messages.
To send Whiteflag Messages on the network, the originator must have at least one blockchain account and address.
An originator may use multiple accounts, and an account may use multiple addresses.
Each account should be identified by sending an A(0) initial authentication message, before sending any other message.
Any message sent by an account before that account has sent an A(0) messages, may be considered unauthenticated
by recipients.
If an account uses multiple addresses, the A(0) message must be sent using the address corresponding with public
key from which all other addresses can be deterministically derived. For recipients to be able to derive those address,
a K(3)2 message referencing the A(0) message must be sent, containing the chain code for child key derivation.

5.1.2 Validating Authentication Information

5.1.2.1 Method 1: URL Validation The URL contained in the VerificationData field an A1 message must point
to web resource. This allows the blockchain account to be linked to a web site, social media account, or any other
web resource that identifies the originator. Consequently, the identification is as strong as the web resource used.
The URL should use the https: scheme to be able to ensure the validity of the resource.
At the URL, a flattened JSON Web Signature JSON serialization (JWS-JS) formatted object i.a.w. RFC 7515 - JSON
Web Signature (JWS) must be found. This object contains a JSON object with authentication information together
with a single digital signature.
The digital signature is used for authentication, non-reputation and data integrity. In other words: it ensures that only
the owner of the web resource controls the blockchain account used to send the A message. The digital signature
must be created using the key pair of the associated blockchain account, i.e. the account from which the A1 message
has been sent.
The non-serialised payload with authentication information must be a JSON object itself and must at least have
the following properties: the originator’s blockchain address, the originator’s name, and the same URL as in the A
message, as follows:

"protected": {
"addr": "...",
"orgname": "...",
"url": "...",
"extpubkey": "..."

}

in which:
• addr is the same blockchain address used to send the corresponding A1 message and of which the corresponding

private key is used to create the signature;
• orgname is the name of the originator, which can be chosen freely;
• url is exactly the same URL as in the VerificationData field the corresponding A1 message.

If the originator uses deterministic keys and addresses, the payload must also contain information to derive the public
keys:

• extpubkey is the serialised extended parent public key from which the child public keys and addresses used by
this originator can be derived.

The serialisation format of an extended public key is blockchain specific. Although supported, deterministic keys
should normally not be used.
An example for usage of JWS for authentication is included in Annex C.

29

5.1.2.2 Method 2: Shared Token Validation The option to use a secret token for authentication allows the issuer
of the token to authenticate the originator’s blockchain account when the token is revealed in an A2 message. The
secret token may be pre-shared or generated from a shared secret:

1. The token may be a secret piece of either arbitrary data or some (encrypted) meaningful data provided to the
originator.

2. The token may also be derived from an ECDH shared secret as described in 5.2.3 Key and Token Derivation.
The secret token must not be used directly in a single A2(0) message. Instead, the authentication data sent in the
A2(0) message must be derived from the secret token using the HKDF function defined in RFC 5869. The procedure
is described in detail in the Key and Token Derivation paragraph.
An originator may use multiple A2(0) messages with tokens from different issuers or ECDH counterparts.
The issuer or ECDH counterparts may send A2(6) or A2(7) messages to confirm or acknowledge the claim, but also
may choose not to do so to prevent others to record metadata on communications between parties.

5.1.3 Additional Authentication Information

Multiple tokens, URL verifications, or combinations thereof, may be sent for stronger authentication by sending
multiple A(0) messages.
The authentication information in an A(0) or A(2) message may be updated with an A(2) message.
An A(3) message must be used when providing longer URLs or tokens than a single message A(0) or A(2) message
can contain in its VerificationData field.

5.1.4 Leaving the Network

An account may leave the network with an A(4) message referencing, and thus discontinuing, each A(0) message
that has been sent earlier. Any message sent by an account after that account has discontinued all its A(0) messages,
should be considered unauthenticated.

5.2 Cryptographic Support Functions

5.2.1 Hierarchical Deterministic Accounts and Addresses

It may not be assumed that every recipient is able to link deterministically derived addresses to the master public key
of the account in order to authenticate the originator.

5.2.2 Key Agreement

The protocol supports cryptographic key exchange using Elliptic Curve Diffie-Hellman (ECDH), which is an Elliptic
Curve variant of the standard Diffie-Hellman algorithm. This well known algorithm allows two parties, that do not
have any prior knowledge of each other, to agree on a shared secret using an open communication channel. This
shared secret may then be used, for example, to derive a secret key for the encryption of messages.
The OpenSSL implementation of ECDH is the reference implementation for for Elliptic Curve Diffie-Hellman key
agreement with the Whiteflag Protocol. The elliptic curve parameters that must be used for Whiteflag are defined by
the brainpoolP256r1 curve as specified in RFC 5639.
Any participant may generate a 264-bit compressed public ECDH key and publish the key on the Whiteflag network
using a K(0)0A message. This allows any two participants, who have both published their public key, to generate the
shared secret using their own private key and the other’s public key.
If one of the participants publishes an K(2)0A message with updated key, the existing shared secrets with other
participants expire and new shared secrets must be generated for and by each other participant.
Only one single participant’s public ECDH key is considered valid at any point in time. Nevertheless, multiple K(0)0A
messages may be sent to republish the public key. If a subsequent K(0)0A message contains a different public key,
this must be interpreted as an K(2)0A message with an updated key (which should have been sent instead).

30

The shared secret may be used as a basis for encryption and authentication, whether for Whiteflag or not, but it
should never be used directly as an encryption key.

5.2.3 Key and Token Derivation

Shared secrets (such as pre-shared, deterministically derived or ECDH generated secrets), must use the HKDF function
defined in RFC 5869 to derive the actual tokens and encryption keys used for Whiteflag.
Note that it is crucial for security that shared secrets used as the input keying material for HKDF, have enough
entropy, i.e. are sufficiently long (at least 16 bytes) and are practically indistinguishable from random data.
The HKDF function must use SHA-256 as the digest algorithm. Furthermore, the HKDF function takes three (3)
parameters depending on the encryption method or token type: the key/token length, a usage specific salt and the
the blockchain address as the info value.

• for authentication method 2 (token-based):
1. the key length (token length) must be 32 bytes (256 bits)
2. the salt value must be (hexadecimal): 420abc48f5d69328c457d61725d3fd7af2883cad8460976167e375b9f2c14081
3. the info value must be the binary blockchain address

• for encryption method 1 (aes-256-ctr with negotiated secret):
1. the key length must be 32 bytes (256 bits)
2. the salt value must be (hexadecimal): 8ddb03085a2c15e69c35c224bce2952dca7878770724741cbce5a135328be0c0
3. the info value must be the binary blockchain address

• for encryption method 2 (aes-256-ctr with pre-shared secret):
1. the key length must be 32 bytes (256 bits)
2. the salt value must be (hexadecimal): c4d028bd45c876135e80ef7889835822a6f19a31835557d5854d1334e8497b56
3. the info value must be the binary blockchain address

Note that the salts are shown above in hexadecimal representation. Implementations must ensure that the data is
correctly provided to the HKDF function, i.e. as binary information, not as a string. This is especially important for
blockchains addresses, which appear in different encodings.
Using the 2.4.2.2 blockchain address 1C8KSK68SJjfDSBx9BpSx3qB3bePf23r77 as an example, this results in the
following pseudocode for deriving authentication tokens:

tokenlength := 32
salt := 0x420abc48f5d69328c457d61725d3fd7af2883cad8460976167e375b9f2c14081
info := 0x007a0baf6f84f0fa7402ea972686e56d50b707c9b67b108866
secretToken := HKDF(sharedSecret, salt, info, tokenlength, digest="sha256")

The pseudocode for deriving encryption/decryption keys for the same blockchain address is as follows:
if (EncryptionIndicator == 1) then:

keylength := 32
salt := 0x8ddb03085a2c15e69c35c224bce2952dca7878770724741cbce5a135328be0c0
info := 0x007a0baf6f84f0fa7402ea972686e56d50b707c9b67b108866

if (EncryptionIndicator == 2) then:
keylength := 32
salt := 0xc4d028bd45c876135e80ef7889835822a6f19a31835557d5854d1334e8497b56
info := 0x007a0baf6f84f0fa7402ea972686e56d50b707c9b67b108866

key := HKDF(sharedSecret, salt, info, keylength, digest="sha256")

5.2.4 Message Encryption

Two encryption methods are currently defined by Whiteflag: the Advanced Encryption Standard (AES) using a 256-bit
key in counter mode (CTR) with either an ECDH negotiated secret (method 1) or a pre-shared secret (method 2).
AES is a symmetric cipher that requires the same key for encryption and decryption. This key must be derived as
described in the Key and Token Derivation paragraph.

5.2.4.1. Encryption Methods 1 and 2 Encryption methods 1 and 2 only differ in the key used for the encryption:

31

• Encryption method 1 uses the ECDH negotiated secret as described in the Key Agreement paragraph to derive
the encryption key. This method can therefore only been used to send encrypted messages between the two
blockchain accounts that have negotiated the shared secret.

• Encryption method 2 uses a pre-shared secret to derive the encryption key. It is outside the scope of this
standard to define the key management and distribution of pre-shared keys. However, it is important for security
that the pre-shared secret is sufficiently long and random.

Encryption of a Whiteflag message is performed with the following steps:
• derive the encryption key respectively from an ECDH negotiated secret or a pre-shared secret using the HKDF

function as described in the the Key and Token Derivation paragraph;
• generate a unique 128-bit initialisation vector, e.g. with cryptographically secure random number generator;
• encrypt the compressed binary encoded message starting at bit 32 (the 33th bit) up to and including the last

bit, using aes-256-ctr with the appropriate key and the just generated initialisation vector.
Below are the encryption steps in pseudocode, in which the key has already been derived as described in 5.2.3 Key
and Token Derivation:

iv := generateRandomBits(128)
encryptedMessagePart := aes(encodedMessage[32...n], key, iv, mode="ctr")
encryptedMessage := encodedMessage[0...31] + encryptedMessagePart

The OpenSSL implementation of AES is the reference implementation for the usage of AES to encrypt and decrypt
Whiteflag messages.
AES in counter mode requires a different initialisation vector for each message encryption, especially when reusing the
same key. Therefore, a new random initialisation vector must be created for each message to be encrypted.
The encrypted message, with the correct encryption indicator set and the plaintext from the 5th byte onwards replaced
with the ciphertext, must be sent as any other Whiteflag message.
The encrypted message must immediately be followed and referenced by a K(3)11 or a K(3)21 message containing
the initialisation vector. Without the initialisation vector the message cannot be decrypted by the recipient. The K
message must not be encrypted itself, and the duress indicator must be 0, regardless of the duress indicator value of
the referenced encrypted message.

5.3 Sending stand-alone Signs and Signals

To send a stand-alone message, Reference Code 0 must be used.
However, nothing prevents other senders to reference the message at any later point in time, thus creating a message
sequence from a previously stand-alone message.
A message is sent by embedding it in a blockchain transaction. The way this is done is blockchain specific. Annex A
contains some information about message embedding for a limited number of blockchains.

5.4 Referencing

5.4.1 Reference Options

5.4.1.1 Allowed Referencing between Message Types The table below shows which references types (as defined
in Reference Indicator Field) may be used between the different message types, and which reference types are not
allowed.

Referencing Message P E D S I Q M F R A K T

P 1/2/3/4/6/7/8/9 X X X 3/5 X 3/5 X X X X X
E X 1/2/3/4/6/7 3/5 5 X X 5 X X X X X
D 5 X 1/2/3/4/6/7/9 X 5 X 5 X X X X X
S 3/5 X X 1/2/4/6/7 3/5 X X X X X X X
I X X X X 1/2/3/4/6/7 X X X X X X X
Q X 5 5 X X 1/2/3/4/7/8/9 X X X X X X
M X 5 5 X X 3 1/2/3/4/7 X X X X X

32

Referencing Message P E D S I Q M F R A K T

F 3 3 3 3 3 3 3 1/2/3/4 3 X X X
R 3 3 3 3 3 3 3 3 1/2/3/4 X X X
A X X X X X X X X X 1/2/3/4/6/7 X X
K 3 3 3 3 3 3 3 3 3 3 1/2/3/4 X
T T T T T T T T T T T T T

X : prohibited T : a test message may make any reference for testing purposes

5.4.1.2 Allowed Referencing between Reference Types The table below shows which reference types (as defined
in Reference Indicator Field) may be used to refer to an earlier message with a certain reference code to create a
meaningful message sequence.

Referencing Message Code 0 1 2 3 4 5 6 7 8 9

0 X X X X X X X X X X
1 Same Same Same Same Same Same Same Same Same Same
2 Same X X Same X Same X X X X
3 Same X Same X X Same X X X X
4 Same X X X X Same Same X Same Same
5 Both X X X X Both X X X X
6 Other X Other Other Other Other X X X X
7 Other X Other X X Other X X Other Other
8 Other X Other X X Other X X X X
9 Other X Other X X Other X X X X

Same: reference code allowed by the same originator of the referenced message Other : reference code allowed by
an other originator than of the referenced message Both: reference code is allowed by both the same or an other
originator than of the referenced message X : prohibited
A message with Reference Code 0 (an original message) may not reference any message.
A message with Reference Code 1 (a recall message) may reference a message with any reference code of the same
originator, meaning that a message with any reference code can be recalled.
A message with Reference Code 2 (an update message) may only reference a message with reference code 0, 3, or 5
meaning that only original, additional, and referring messages may be updated and only by the same originator.
A message with Reference Code 3 (an additional information message) may only reference a message with reference
code 0, 2, or 5, for the same originator to provide additional information to original, updating and referring messages.
Reference Code 3 may be only used once to refer to the original message of the same message type. For example:
S(0) < R(3) < R(3) and ... < [F(3)] < K11(3) << [F(3)] < K11(3) are allowed, but ... < R(3) < R(3)
<< R(3) is not. There is one exception: Reference Code 3 may be used to reference the same message type of types
P, D, Q, and M more than once, when creating composite areas (see Composite Areas and Structures). In that case,
the additional information must reference the initially referenced message and may not reference another message
with additional information, e.g. D(0) < D(3) << D(3) <<< D(3)

A message with Reference Code 4 (a discontinue message) may only reference a message with reference code 0, 5, 6, 8,
or 9 of the same originator, because an only originator may only discontinue an original, related, confirmation, comply
or reject message. Discontinuing a message also implies that any later updates to that message are discontinued.
A message with Reference Code 5 (a referring message) may only reference a message with Reference Code 0 or 5,
i.e. to refer to an original or another referencing message.
A message with Reference Code 6 (a confirmation message) may only reference a message with Reference Code 0, 2,
3, 4, or 5, i.e. confirming an original, updated, additional information, expiration, or related message.
A message with Reference Code 7 (an acknowledgement message) may only reference may only reference a message
with reference code 0, 2, 5, 8 or 9, to acknowledge an original, updated, related, comply or reject message.
A message with Reference Code 8 (a comply message) may only reference a message with Reference Code 0, 2, or 5,
i.e. to indicate the originator will act upon or in accordance with an original, updated, or a related message from

33

another originator.
A message with Reference Code 9 (a reject message) may only reference a message with Reference Code 0, 2, or 5,
i.e. to indicate that the originator rejects, denies or does not agree with the referred original, updated, or a related
message from another originator.

5.4.2 Message Sequences

When referencing messages are referenced themselves, message sequences may be created. The paragraphs below
describe which message sequences, as allowed by the reference options described in Reference Indicator Field, provide
meaningful information.

5.4.2.1 Authentication An A message may only reference another A message, in order to:
• recall the A(0) message with Reference Code 1;
• update the A(0) message with Reference Code 2, e.g. to provide new authentication information;
• provide additional information with Reference Code 3, when the authentication information is too long to

provide in the VerificationData field of a single message;
• to discontinue the original A(0) with an A(4) message, meaning the originator leaves the network;
• to confirm the claimed identity of another originator by referencing its A(0) message with an A(6) message.

For example, an initial authentication of originator X using an URL of 30 bytes, which is confirmed by another party Y,
later updated with an URL of the same length, and finally the account is closed, will result in the following message
sequence:
A01(0)X < A01(3)X << A01(6)Y <<< A01(2)X < A01(3)X <<<<< A01(4)X

5.4.2.2 Updating Signs and Signals Conflicts and disasters are dynamic and events end or change. Therefore,
the protocol allows to update signs and signals using message sequences with Reference Codes 2, 3 and 4.
The following example are illustrative for updating signs and signals and should be interpreted similarly when updating
other signs and signals:

Message Sequence Explanation
P10(0) < P10(2) << R01(3) <<<
P10(4)

An original P10(0) message reports the presence of an
ICRC-entity, which is subsequently updated with an P10(2)
message, e.g. because the location changed. A reference is made
to an ICRC-website about the entity to provide additional
information using a R01(3) message. At a later point in time,
the protective sign is withdrawn by using a P10(4) message to
discontinue the original sign.

5.4.2.3 Relating Signs and Signals Events are often related. For example, a dangerous situation such as a wildfire
may cause multiple buildings to be destroyed and multiple emergencies. The protocol allows to relate the different
signs and signals for these events to create a better understanding of a situation.
A typical sequence of message will be a danger/disaster sign, followed by one or more status and emergency signals
using Reference Code 5, which may be used to reference messages from any other account.
The following examples are illustrative for relating signs and signals and should be interpreted similarly when relating
other signs and signals:

34

Message Sequence Explanation
D32(0)X < D43(5)X << E12(5)X << S26(5)Y
<<< S25(5)Z

An original D32(0) message reporting a rail accident is
initially referenced two times: to indicate the accident
coincides with a chemical explosion with a D43(5)
message and to make an emergency call for fire & rescue
assistance with a E12(5) message. Additional status
messages relating to the accident or explosion may be
sent, to report the status and locations of objects that
are affected as a result of the accident or explosion.

D15(0)X < E01(5)Y < E01(4)Y <<< S11(5)Y An original message D15(0) reporting a complex attack
is referenced by somebody sending an E01(5) distress
signal as a result of the attack. Later, when the person is
in safety, the distress signal is discontinued with an
E01(4) message and an S11(5) proof of life is sent.

D52(0)X < R01(5)A << R01(5)B <<< R01(5)C An uncontrolled uprising is reported with a D52(0)
message, and then referenced by three R01(5) messages
from Other Orig.nators A, B and C to point to relating
internet resources such as pictures of the uprising on
social media.

5.4.2.4 Confirming Signs and Signals Conflict and disaster zones are chaotic and it is often difficult to assess
a situation based on a single source of information. To improve the reliability of information, the protocol allows
another originator to confirm of signs and signals posted on the network using Reference Code 6.
The following examples are illustrative for confirming signs and signals and should be interpreted similarly when
confirming other signs and signals:

Message Sequence Explanation
D21(0)X < D21(6)Y << D21(6)Z An original message reporting a minefield is confirmed two times by

different originators with two D21(6) messages referring to the original
D21(0).

D21(0)X < D21(6)Y < D21(4)Y An expiration message D21(4) referring to a D21(6) confirmation
message means that the original D21(0) message reporting a minefield
cannot be confirmed anymore.

5.4.2.5 Composite Areas and Structures A composite area is a single area specified by multiple messages. A
composite structure is a single structure specified by multiple messages. Composite areas and structures may be used,
for example, when an area/structure is larger than the ObjectSize fields allows, or to create areas/structures with
shapes other than the ObjectType field allows.
To report a new composite area or structure, the first message must have its Reference Indicator set to 0 (original
message), and any following message in the sequence must reference the original message using Reference Indicator 3.
The referencing messages must have the same Subject Code as the original message.
For example, a single mine field comprised of three area parts is reported on the network with the following message
sequence:
D21(0) < D21(3) << D21(3)

Composite areas may only be created using messages with Object Code 20-29. Composite structures may only be
created using messages with Object Code 30-39.
To reference a composite area or structure as a whole (e.g. to discontinue it using Reference Code 4 or to confirm it
using Reference Code 6), the referencing message must reference the original message.
An update message (Reference Code 2) may reference individual messages of the sequence, and thus updating each
part of the composite area/structure separately. A recall message (Reference Code 1) may either reference the original
message, or individual messages of the sequence.

35

5.4.2.6 Acknowledging messages Acknowledgements may be sent to inform others of having ‘received’ a certain
message, i.e. to acknowledge that a certain message has been witnessed, e.g. to notify the receipt of updated
information or a rejection. Acknowledgements may refer to an original, updated, related, comply or reject message
and can be used in message sequences.

Message Sequence Explanation
D21(0)X < D21(2)X < D21(7)Y An acknowledging message D21(7) referring to a D21(2) update

message, means that the update to D21(0) message has been
acknowledged.

Q20(0)X < Q20(9)Y < Q20(7)X An Area Access request signal ‘Q20(0)’ is rejected by a Q20(9)
message, which is then acknowledged by an Q20(7) message

5.4.2.7 Complying to messages The ‘comply’ message reference code provides the option to an originator to
indicate they will act upon or in accordance with an original, updated, or a related message from another originator.
This referencing option may be useful to respond to other originators’ message to inform or notify them about an
action to be undertaken.

Message Sequence Explanation
E11(0)X < E11(8)Y An Emergency Signal E11(0) indicating that urgent medical assistance

is required, is responded to by somebody complying with the ask for
assistance.

P02(0)X < P02(8)Y << P02(8)Z A request for negotiation P02(0) will be complied to by two different
originators respectively sending a P02(8) message.

5.4.2.8 Rejecting messages The ‘reject’ message reference code may be used to indicate that the originator rejects,
denies or does not agree with the referred original, updated, or a related message from another originator.

Message Sequence Explanation
Q20(0)X < Q20(9)Y An Area Access request signal ‘Q20(0)’ is rejected by a Q20(9) message

D21(0)X < D21(9)Y An original message reporting a minefield is rejected by a different
originators with a D21(9) messages referring to the original D21(0).

5.5 Testing

Test messages must be disregarded for any other purposes than testing. Test messages should only be used on testing
networks of blockchains.
A test message may reference any other message for testing purposes.

36

Annex A. Blockchain layer specific details

This Annex is meant to provide additional information and considerations about the use of blockchain networks for
Whiteflag Protocol end-users and for creating implementations.

A.1 Implementation Guidelines

A.1.1 Completeness of the blockchain database

When using the Whiteflag Network as a source for improving situational awareness, it is important for end-users to
have a complete view on all messages that have been sent in a given context. It is advised for end-users to assess if all
(relevant) blocks have been processed and no message has been omitted or skipped, as this might result in inaccurate
interpretation of information.

A.1.2 Data encapsulation in transactions

The Whiteflag Network is created as a blockchain overlay network by Whiteflag applications embedding Whiteflag
messages in blockchain transactions. The underlying blockchain network(s) therefore need(s) to allow for the
encapsulating of data in a transaction.
For security reasons, it is currently advised to implement the Whiteflag Protocol only on blockchain networks that use
a proof-of-work consensus model.
There exist multiple blockchain networks that provide this functionality. See the table below for several examples:

Blockchain
Message
embedding

Maximum message
length

Signature algorithm
Transaction hash

Bitcoin OP_RETURN 80 bytes ECDSA secp256k1 256 bits (64 hexadecimals)

Ethereum data field (dynamic) ECDSA secp256k1 256 bits (64 hexadecimals)

In the case of Bitcoin, the OP_RETURN field of a raw transaction allows for the encapsulation of data constrained to a
maximum 80 bytes.
In the case of Ethereum, the data field of a raw transaction allows for the encapsulation of a dynamic amount of
data that is relative to the gasLimit of individual blocks. In practice, this field can generally store multiple kilobytes
of data.
Message formatting within the Whiteflag Protocol has been structured to not require more than 80 bytes for sending
signs and signals. Reference messages and/or concatenation may be used in cases where providing additional data is
required.
Please note that the above parameters may change over time as the codebases of blockchain networks evolve, in
which case implementations of the Whiteflag Protocol may need to be updated accordingly.

A.1.3. Monitoring of Dynamic Blockchain Parameters

Blockchain networks are highly dynamic distributed computing networks that, because of their decentralized architecture,
rely both on actively and continuously maintained consensus by its participating validating nodes, as well as on the
peer-to-peer infrastructure for transceiving data over the network.
It is advisable to monitor several parameters when implementing the Whiteflag Protocol to ensure the underlying
blockchain network(s) is/are operating correctly.

A.1.3.1 Relaying and Processing of Messages The following parameters concern the relaying and processing of
Whiteflag messages by the underlying blockchain network(s).

37

Peer-to-Peer Connectivity Monitoring of the amount of peers a message sending Whiteflag account connects to,
to ensure messages are relayed correctly. Many blockchain networks provide a list of nodes that have proven long-term
reliability. It is up to the Whiteflag participant to decide how many and which peers to connect to.

Transaction Costs Each message will inflict a minimal Transaction Cost to be paid for the network to process the
transaction. These costs usually consist of a minimum transaction amount and a transaction fee. End-users need to
ensure the proper amount of funds are included for each message that is sent.

Block Time Each blockchain networks’ consensus protocol defines an average Block Time the network targets for
creating new blocks. Monitoring of block creation time can assist in determining the expected validation time of a
message.

Transaction Relay Time Monitoring of the number of transactions on the blockchain network pending verification.
In cases of very high transactional load, transactions may require longer processing times or increased fees.

Number of Block Confirmations Monitoring the number of blocks that have been added to the shared database
after the block containing a Whiteflag message. It is up to the Whiteflag participant to determine how many blocks
deep a message needs to be for it to be considered secured in the blockchain.

Blockchain Protocol Changes Blockchain networks rely on their respective protocols for verifying transactions on
the network. In case of a change in protocol, features may change causing Whiteflag Protocol implementations to
require updating.

A.1.3.2 Blockchain Security The following parameters concern the security of the underlying blockchain network(s):

Network hash-rate Monitoring of the aggregated computational power of the number of transaction validating
nodes.

Changes in Network Hash-Rate Monitoring whether there are significant changes in the network’s hash-rate and
if so, take appropriate measures.

Hash-Rate Distribution Monitoring the distribution of the total hash-rate amongst the participating validating
nodes. In case of a validating node (or a collection of nodes) representing 51% of the total network hash-rate, take
appropriate measures.

Consensus Protocol Changes Blockchain networks rely on their respective consensus protocols for the proper
validation of transactions. Major changes to a consensus protocol may have significant impact to a blockchain network
as a whole.

Chain Reorganisation Dynamics Malicious actors may perform attacks on a blockchain network by causing
rapid and/or large-scale chain reorganisations. Many blockchain network prescribe a chain “re-org limit” and have
implemented other measures to mitigate such events. It is advised to assess resiliency to such attacks per individual
blockchain network.

A.2. General considerations related to blockchain network functionality

A.2.1 Consensus protocols

Blockchain networks using the proof-of-work consensus model (Nakamoto consensus) timestamp transactions by
hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work. The timestamp proves that the data must have existed at the time in order to get into the
hash. Each timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp

38

reinforcing the ones before it. The hash chain of blocks provides an unchangeable historical record, which is verifiable
by anyone.
Blockchain networks using different consensus protocols are currently in an experimental phase and have not yet been
proven to work securely at large scale. At this point, it is therefore not advised to use an other type of blockchain
network than those using a proof-of-work consensus protocol.

A.2.2 Market dynamics

Blockchain networks require a native currency (often called crypto-currency) to incentivize validating nodes to expend
resources on doing the proof-of-work. Transactions containing Whiteflag messages are sent by spending only the
minimum amount of native currency required by the blockchain network’s protocol to effect a valid transaction, plus
an additional fee.
While these amounts may be relatively small, the market dynamics related to these native currencies can cause price
volatility, bear/bull dynamics or even trade-halts, which may cause effect usability.

A.2.3 Private Blockchain Networks and Permissioned Distributed Ledgers

Please note that the Whiteflag Protocol is specifically designed to be implemented on open blockchain networks.
Private blockchain networks, or permissioned distributed ledgers, do not adhere to the design principles of the Whiteflag
Network, as these systems require a trusted party (i.e. trusted nodes) to establish consensus within the network and
do not provide open access, and should therefore not be used.

A.2.4 Anonymous Transactions

Blockchain networks using digital signature schemes that enable fully anonymous transactions could theoretically be
used to anonymously send messages on the Whiteflag Network. Examples of such blockchains employ techniques
like zero-knowledge-proofs and ring signatures to create conditions of untraceability and unlinkability. These type
of transactions do not adhere to the principles of this standard, as they limit message authentication, and should
therefore not be used.

39

Annex B. JSON Schema of Whiteflag Messages

(contained in separate file)

40

Annex C. Example JSON Authentication Objects

The JSON representation of an A1 message sent using an example static Base58 blockchain address
1C8KSK68SJjfDSBx9BpSx3qB3bePf23r77 may be as follows:
{

"MetaHeader": {
"example": true

},
"MessageHeader": {

"Prefix": "WF",
"Version": "1",
"EncryptionIndicator": "0",
"DuressIndicator": false,
"MessageCode": "A",
"ReferenceIndicator": "0",
"ReferencedMessage": "00"

},
"MessageBody": {

"VerificationMethod": "1",
"VerificationData": "https://organisation.int/whiteflag"

}
}

The related JSON formatted object with the authentication information to be signed and published at the provided
URL https://organisation.int/whiteflag would be:
{

"addr": "1C8KSK68SJjfDSBx9BpSx3qB3bePf23r77",
"orgname": "Organisation Name",
"url": "https://organisation.int/whiteflag"

}

This object is then used as the payload to create a JSON Web Signature (JWS) object that includes a digital signature
created with the private key of the Bitcoin address. The compact serialization specified by the JWS standard would
normally result in the following token:
eyJhbGciOiJFUzI1NiJ9.eeyJhZGRyIjoiMUM4S1NLNjhTSmpmRFNCeDlCcFN4M3FCM2JlUGYyM3I3N
yIsIm9yZ25hbWUiOiJPcmdhbmlzYXRpb24gTmFtZSIsInVybCI6Imh0dHBzOi8vb3JnYW5pc2F0aW9u
LmludC93aGl0ZWZsYWcifQo.XWBRA1TrCxs8tpep1lLPcmpp9JlO_A0TJB5ULOROvadje3SgAsfkFEj
E2DoHGpWJ_zNGlEPBtdUQo9MEypIp2Q

However, for practical purposes the object published at the provided URL must be a flattened JWS JSON Serialization
object:
{

"protected": "eyJhbGciOiJFUzI1NiJ9",
"payload": "eeyJhZGRyIjoiMUM4S1NLNjhTSmpmRFNCeDlCcFN4M3FCM2JlUGYyM3I3NyIsIm

9yZ25hbWUiOiJPcmdhbmlzYXRpb24gTmFtZSIsInVybCI6Imh0dHBzOi8vb3JnY
W5pc2F0aW9uLmludC93aGl0ZWZsYWcifQo",

"signature": "XWBRA1TrCxs8tpep1lLPcmpp9JlO_A0TJB5ULOROvadje3SgAsfkFEjE2DoHG
pWJ_zNGlEPBtdUQo9MEypIp2Q"

}

The equivalent of a fully unserialized JSON object representation is provided here as human readable example:
{

"protected": {
"alg": "ES256"

},
"payload": {

"addr": "1C8KSK68SJjfDSBx9BpSx3qB3bePf23r77",
"orgname": "Organisation Name",
"url": "https://organisation.int/whiteflag"

},

41

"signature": "XWBRA1TrCxs8tpep1lLPcmpp9JlO_A0TJB5ULOROvadje3SgAsfkFEjE2DoHG
pWJ_zNGlEPBtdUQo9MEypIp2Q"

}

Note that the used algorithm (ES256, i.e. ECDSA using P-256 and SHA-256, in line with the underlying blockchain)
is included in the protected header.

42

Annex D. Definitions

Below is an overview of terms as used in this standard within the context of Whiteflag.

Term Description
Account The identifier under which an originator utilises one or more blockchain addresses.
Address The identifier that corresponds to a cryptographic key pair to perform transactions, i.e. to

send messages, on a blockchain.
Application Any software, system or device utilising (part of) the Whiteflag Protocol.
Authentication The confirmation that a claimed characteristic of an entity is actually correct, in this case

used to verify the originator of a message.
Blockchain A distributed and continuously growing list of grouped transactions, called blocks, which

are linked and secured using cryptography.
Confidentiality The assurance that the information contained in a message is not made available or

disclosed to entities as required by the originator.
Data Integrity Verification that the information contained in a message is received completely and

unaltered.
Disaster A sudden, calamitous event that seriously disrupts the functioning of a community or

society and causes human, material, and economic or environmental losses that exceed the
community’s or society’s ability to cope using its own resources.

Message An atomic piece of Whiteflag data as defined in this standard and incorporated in a single
transaction on a blockchain.

Network The usage of the Whiteflag protocol on a specific blockchain, or all Whiteflag participants
on a specific blockchain.

Non-repudiation The undeniable proof that a message has been sent by an address.
Open Standard A standard that is public and without any restriction in their access or implementation.
Originator A participant that is the sender of a message.
Participant A person or an organisation using the Whiteflag protocol; a participant may have multiple

blockchain accounts.
Protective Sign A symbol used to mark persons and objects under the protection of treaties international

law and regulations.
Security The measures to protect and preserve the integrity and availability of the messages, and,

if required by the originator, the confidentiality.
Transaction A record on a blockchain (containing a single Whiteflag message).

43

Annex E. Signs & Signals Equivalents

(contained in separate repository)

44

Annex F. Example Use Cases

Use case 1: NGO Area Access to Provide Aid

A humanitarian convoy is carrying emergency assistance for affected populations in a conflict zone. First of all,
the authenticity of the blockchain account of the aid organisation is validated with an A2(0) message and can be
reinforced on a regular basis with A2(2) updates.
In order to safely reach their destination, the aid organisation needs to request area access in advance to all parties to
the conflict. These requests are made using Q messages, with which the following information is provided: trajectory,
dates, vehicles and personnel. The aid organisation is able to send these request encrypted to each party individually
by generating a unique encryption key for that party using the K0A messages on the blockchain.
Parties can indicate the receipt and compliance with the request by using reference codes 7 and 8. Last but not least,
a party may withdraw its compliance with the request at any time by sending a Q(9) deny message. This would result
in the following sequence:
Q20(0)A < Q20(3)A ... << Q(7) <<< Q(8) ... <<<< Q(9)

While on the road, the convoy is able to quickly inform other humanitarian actors of potential changes in the
environment as well as receive as much as possible live information while driving, by using protection and danger
signs, e.g. the P11 protective sign, D13 bomb attack, D21 unexploded ordnance, DA5 bomb attacks, D51 uncontrolled
uprising, etc.
Once on location, a protective sign is sent. In order to achieve meaningful humanitarian action, the NGO also
communicates the type of assistance provided using M messages to avoid duplication and inefficiency of humanitarian
aid:
P11(5) < M(5)

Use case 2: Protected Sites and Critical Infrastructures

Since messages are persistent on a blockchain, an organisation can utilize the Whiteflag Protocol to create a public
digital register of sites that are protected under international law using P messages. In addition, I messages are used
for notifications about infrastructures that are not necessarily protected under international law, but are important
for NGO operations or for affected populations and refugees: e.g. water treatment facilities, power plants, food
distribution location, shelter, NGO warehouses, using I messages.
This information might be shared to prevent unintended air attacks, but also to share information between NGOs and
the UN. For example, an NGO maintains a continuously updated overview of critical infrastructures and a register of
hospitals on the Whiteflag network, including status updates. It is an operational decision to disclose or encrypt the
information to prevent abuse.
Currently, this type of information is not always confirmed or denied afterwards. Using Whiteflag, other parties can
confirm the information by using reference code 6, e.g.:
I(0) < I(6) ... P31(0) < P31(6)

A message sequence where a hospital is identified, a party indicates it will comply with its protected status, and the
status of the hospital is periodically updated, will look like:
P31(0) < P31(8) << S(5) ... < S(2)

Another example is a local cultural institute C that can create a public digital register of monuments in its city or
village by posting a protective sign at each monuments location, using P52 messages (protective sign for a cultural
property).
When a protected site or critical infrastructure ever comes under attack, this can be broadcasted immediately by
anyone using the Whiteflag Protocol, sending for example a D11 message (structure under ground attack), resulting
in the following message sequence:
P52(0)C < D11(5)

Were the attack undertaken by a party that intends to comply with international law (for which reason such a party
might very well actively use the Whiteflag Protocol), that party would be immediately informed of their mistake
allowing them to cease fire before any more damage is done.

45

If the attack is performed by a non-compliant armed group, the Whiteflag Protocol ensures that the attack is recorded
and known to the international community, allowing for example peacekeeping forces to react and/or providing
evidence for the war crime.

Use case 3: Peacekeeping Forces Confirm a Mine Field Reported by Locals

The Whiteflag Protocol allows to digitally mark dangerous zones, such as minefields or areas where unexploded
ammunition is present. Suppose local civilians are aware of an area where mines are present. A local aid worker
A might report such an area by sending one or more D21 messages using a special app on her smartphone. The
information about the dangerous area is available immediately to civilians, NGOs, journalists etc., even though the
information about the mine field might not yet considered accurate or true by everybody.
Based on the original message, a UN peacekeeping unit or UNMAS (U) plan to investigate the area. Once they can
confirm it is a minefield, a higher-level UN headquarters sends a confirmation message using a UN information system
with a Whiteflag interface through a well-known and validated UN blockchain account.
A link to an UNMAS website with additional information (mine types, quantity, level of danger, stay clear area, current
de-mining status) is provided using an R message, which can be resent when the web page is updated.
This scenario resulted in the following message sequence:
D21(0)A < D21(6)U < R(3)U ... < R(2)U

It would be very easy for anyone to develop a web application to actively monitor all these sorts of messages and
project this information on a map, creating broad awareness of the danger among aid workers and local populations.

Use case 4: Proof of Life by a Journalist

A journalist working in a combat zone wants to let his news agency know where he is on a regular basis. To do this,
the journalist makes his blockchain account known by sending an A2 message containing a token that was provided to
him by his news agency. He can now be positively identified on the network by his news agency, while his identity is
not made public.
From now on, the journalist can send an S11 (proof-of-life status message) on a regular basis, either with or without
his location. For extra security, it is possible to encrypt the message to ensure only recipients know where he is.

Use case 5: Negotiate a Cease Fire between Fighting Parties

Warring parties can use Whiteflag to negotiate a cease fire, e.g. to be able to provide medical care in a specific area
for a certain amount of time. In the following example sequence, party A requests a cease fire using a Q message with
additional information included in an F message; parties B and C agree with the request by responding with reference
code 8:
Q(0)A < F(3)A << Q(8)B <<< Q(8)C

Note that Whiteflag is limited to fixed messages and in itself not suitable to conduct detailed negotiations. However,
even though other communication channels are used to come to a cease fire, Whiteflag allows to undeniably record
the request and any outcomes.

Use case 6: Armed Group under Air Attack wants to Surrender

Imagine an armed group A is under a heavy air attack, and the remaining combatants want to surrender. However, it
is very unlikely that they are in radio contact with the pilots, and the pilots might not see a physical white flag.
The Whiteflag Protocol can be used to send a message to the attacking party, without knowing any contact details.
An A2(0) message is sent, or has been sent before, referring to some sort of social media channel that is known to be
used by the armed group. The blockchain account is now linked to this group, and a P03(0) surrender message is
sent.
If a headquarters or command centre of the attacking party M is listening on the Whiteflag Network for situational
awareness, they will be instantaneously informed of the digital white flag on the location under attack. Of course, the
trustworthiness of the message needs to be evaluated based on earlier communications from the same account, other

46

intelligence, confirmation by other parties on the network, the actual behaviour of the armed group at the location,
etc.
Either way, the information can be relayed over a military data link to the pilots in the aircraft, who might then be
able to visually confirm a white flag. Once that is the case, the attacking party M can send both a confirmation and
an acknowledgement. This scenario resulted in the following message sequence:
A2(0)A < P03(0)A < P03(6)M << P03(7)M

47

	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Document Structure
	1.4 Used Terminology
	1.5 License and Usage
	1.6 Configuration Management

	2 Overview
	2.1 Design Principles
	2.2 Protocol Stack and Scope
	2.3 References
	2.3.1 International Rules & Regulations
	2.3.2 Technical Standards

	2.4 High-level Functional Overview
	2.4.1 Blockchain and Communication Functionality
	2.4.2 Message Functionality
	2.4.3 Spatial information

	2.5 Minimum Implementation
	2.6 Implementation Considerations
	2.6.1 Trustworthiness of information
	2.6.2 Account and Private Key Protection
	2.6.3 Encryption and Key Exchange
	2.6.4 Processing and Storage of Messages

	2.7 Note on the notation of Messages and Message Sequences

	3 Use Case Examples
	4 Message Format
	4.1 Message Structure
	4.1.1 Representations
	4.1.2 Encoding
	4.1.3 Compression
	4.1.4 Encryption
	4.1.5 Embedding

	4.2 Message Header
	4.2.1 Generic Message Header

	4.3 Message Body
	4.3.1 Functional Messages: Signs & Signals
	4.3.1.2.5 Infrastructure Signs
	4.3.1.2.6 Mission Signals
	4.3.1.2.7 Request Signals
	4.3.2 Functional Messages: Resource
	4.3.3 Functional Messages: Free Text
	4.3.4 Management Messages: Authentication
	4.3.5 Management Messages: Cryptographic Support
	4.3.6 Management Messages: Test

	5 Protocol
	5.1 Joining and Leaving the Whiteflag Network
	5.1.1 Initial Authentication
	5.1.2 Validating Authentication Information
	5.1.3 Additional Authentication Information
	5.1.4 Leaving the Network

	5.2 Cryptographic Support Functions
	5.2.1 Hierarchical Deterministic Accounts and Addresses
	5.2.2 Key Agreement
	5.2.3 Key and Token Derivation
	5.2.4 Message Encryption

	5.3 Sending stand-alone Signs and Signals
	5.4 Referencing
	5.4.1 Reference Options
	5.4.2 Message Sequences

	5.5 Testing

	Annex A. Blockchain layer specific details
	A.1 Implementation Guidelines
	A.1.1 Completeness of the blockchain database
	A.1.2 Data encapsulation in transactions
	A.1.3. Monitoring of Dynamic Blockchain Parameters

	A.2. General considerations related to blockchain network functionality
	A.2.1 Consensus protocols
	A.2.2 Market dynamics
	A.2.3 Private Blockchain Networks and Permissioned Distributed Ledgers
	A.2.4 Anonymous Transactions

	Annex B. JSON Schema of Whiteflag Messages
	Annex C. Example JSON Authentication Objects
	Annex D. Definitions
	Annex E. Signs & Signals Equivalents
	Annex F. Example Use Cases
	Use case 1: NGO Area Access to Provide Aid
	Use case 2: Protected Sites and Critical Infrastructures
	Use case 3: Peacekeeping Forces Confirm a Mine Field Reported by Locals
	Use case 4: Proof of Life by a Journalist
	Use case 5: Negotiate a Cease Fire between Fighting Parties
	Use case 6: Armed Group under Air Attack wants to Surrender

